

UNIVERSITY OF CALGARY

Agile Methods and User-Centered Design: How These Two Methodologies are Being

Integrated in Industry

by

Brian David Fox

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST 2010

© Brian David Fox 2010

 ii

Approval Page
UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance a thesis entitled “Agile Methods and User0Centered Design: How

These Two Methodologies are Being Integrated in Industry” submitted by Brian David

Fox in partial fulfillment of the requirements for the degree of Master Degree in

Computer Science.

 Supervisor, Dr. Frank Maurer

 Department of Computer Science

 Co-supervisor, Dr. Jonathan Silllito

 Department of Computer Science

 Dr. Rob Kremer

 Department of Computer Science

 Ron Murch

 Haskayne School of Business

 Date

 iii

Abstract

Agile development approaches and User-Centered Design (UCD) both strive to build

software that meets the customer‟s or user‟s needs. For many software applications, a

user interface (UI) that is usable adds value for the users. Recently, there has been some

evidence that suggests that practicing agile methods alone does not ensure that an

application‟s UI is usable for the user. As a result there has been interest in combining

agile methods with UCD practices. This research presents the results of a qualitative

empirical study to contribute to an understanding of how these two methodologies are

being effectively combined, The results present a general process model, we call the

Agile-UCD General Process Model (AUGPM), and three refinements of the AUGPM. We

call these the Specialist Refinement, Generalist Refinement, and the Facilitator

Refinement. The results also present when participants felt the UCD practitioner should

be brought into an agile methods development process.

 iv

Acknowledgements

During the course of my journey through graduate school there were many people

responsible for my reaching the end. At this point, I would like to take the opportunity to

acknowledge my thanks to these people.

To Dr. Frank Maurer, thank you for all your direction, advice, patience, and above all,

your support. Without your kindness and guidance this research would never have been

completed.

To Dr. Jonathan Sillito, thank you for co-supervising my work and for all the impromptu,

drop-in office sessions that you were always there for. You imparted me with knowledge

that I will carry with me for a lifetime.

To all my ASE lab mates Patrick, Robbie, Xin, Yasser, and the German students, thank

you all for your assistance and input over the years.

Finally, to Colleen Kim Klemacki, thank you for all your help, support, and careful

prodding that helped get me through the difficult times and finish this thesis.

 v

Dedication

This is for you mom. Without all your help and support I would have never finished this

journey. Your blind eyes taught me how to see things I otherwise would have never seen.

 vi

Publications From This Thesis

Some of the materials and ideas presented in this thesis may have previously appeared in

the peer reviewed publication:

David Fox, Jonathan Sillito, Frank Maurer: Agile Methods and User-Centered Design:

How These Two Methodologies are Being Successfully Integrated in Industry, Proc.

Agile Conference, Toronto Canada 2008, IEEE, p. 63-72.

 vii

Table of Contents

APPROVAL PAGE ..II

ABSTRACT .. III

ACKNOWLEDGEMENTS ... IV

DEDICATION .. V

PUBLICATIONS FROM THIS THESIS... VI

TABLE OF CONTENTS .. VII

LIST OF TABLES ... IX

LIST OF LIST OF FIGURES AND ILLUSTRATIONS .. X

1.0 INTRODUCTION ... 1

1.1 AGILE METHODS ... 3
1.2 INTERACTION DESIGN.. 4
1.3 MOTIVATION FOR RESEARCH .. 6
1.4 RESEARCH QUESTIONS .. 7
1.5 ROAD MAP .. 8

2.0 BACKGROUND .. 10

2.1 THE WATERFALL APPROACH .. 10
2.2 AGILE METHODS ... 12

2.2.1 eXtreme Programming .. 14
2.2.2 Scrum .. 16

2.3 INTERACTION DESIGN.. 18
2.3.1 HCI ... 20
2.3.2 Usability .. 20
2.3.3 User-Centered Design .. 21

2.4 AGILE METHODS AND USER-CENTERED DESIGN ... 27
2.5 RELATED STUDIES ... 28

2.5.1 Adding UCD Practitioners ... 36
2.6 CHAPTER SUMMARY.. 40

3.0 RESEARCH METHOD & DATA FINDINGS ... 41

3.1 QUALITATIVE RESEARCH .. 41
3.2 GROUNDED THEORY .. 43

3.2.1 Data Collection: The Interviews ... 44
3.2.2 Participants ... 47
3.2.3 Open Coding ... 49
3.2.4 Axial Coding ... 51
3.2.5 Selective Coding ... 54

3.3 STUDY VALIDITY ... 56
3.4 CHAPTER SUMMARY.. 57

4.0 FINDINGS: COMPROMISING METHODOLOGIES... 58

4.1 THE AGILE-UCD GENERAL PROCESS MODEL ... 58
4.1.1 Tandem Development ... 64

4.2 AUGPM REFINEMENT 1: THE SPECIALIST ... 66
4.3 REFINEMENT 2: THE GENERALIST ... 69
4.4 REFINEMENT 3: THE FACILITATOR .. 71
4.5 COMPROMISE: A SOLUTION FOR INTEGRATING THE METHODOLOGIES ... 73
4.6 AGILE COMPROMISES .. 74

4.6.1 What Was Not Compromised .. 77

 viii

4.6.2 When Agile is Integrated Into a Project .. 77
4.7 UCD COMPROMISES .. 78

4.7.1 What Was Not Compromised .. 79
4.8 TIMING OF INTEGRATION ... 80

4.8.1 When UCD is Integrated Into an Agile Project .. 80
4.9 CHAPTER SUMMARY.. 89

5.0 CONCLUSION .. 90

5.1 DISCUSSION ... 90
5.2 LIMITATIONS OF THE STUDY .. 95
5.3 FUTURE WORK .. 96

6.0 BIBLIOGRAPHY ... 98

APPENDIX A – STUDY QUESTIONS ... 107

APPENDIX B – OPEN CODES ... 110

APPENDIX C – CODED CATEGORIES... 123

APPENDIX D – CO-AUTHOR PERMISSIONS ... 128

 ix

List of Tables

Table 1: Participant's role, experience and company size... 49

Table 2: Open codes that have been assigned to the Roles category during Axial coding53

Table 3: The two high level categories and assignment of the existing categories to them.

 ... 55

Table 4: Open codes applied to transcription data examples. .. 110

Table 5: Open codes assigned to their initial categories. .. 128

 x

List of List of Figures and Illustrations

Figure 1: The seven steps from the Royce Waterfall methodology.................................. 11

Figure 2: Overview of the Scrum process [74] ... 18

Figure 3: Vertical prototyping representing functionality versus horizontal prototyping

representing different features. The scenario is shown where the two meet and

consists of performing some task [72, 16] .. 25

Figure 4: An illustration of Sy's Autodesk Agile UCD integration process [6]. 35

Figure 5: A screenshot of Express Scribe transcription tool... 46

Figure 6: A view of HyperRESEARCH coding screen. The blue areas (from left to right)

represent the order in which codes are applied to a transcription, the overall code list,

and finally where the code is applied to which specific text in the transaction 51

Figure 7: A UCD Agile methods project development life cycle common to the

participants. The grey area (Initial stage) represents the upfront UI design stage that

happens once in the development lifecycle of a project. The area in white represents

the Iterative stage which continues for the rest of the development lifecycle. 60

 1

1.0 Introduction

Most software applications today require some form of a user interface (UI) in

order for humans to interact with that application. It makes sense to build a UI that

improves the experience of using it in a positive and productive manner for the user.

Some companies are realizing that a positive user experience (UX) is essential to the

success of their software products. The importance of the usability of a software product

has permeated a number of multi-national companies such as Hewlett Packard, IBM and

Apple [Error! Reference source not found.]. Hewlett Packard‟s former CEO, Carly

Fiorina, has made the concept of achieving a quality user experience the hallmark of her

approach. Karel Vredenburg, IBM‟s Program Director of Corporate User-Centered

Design and User Engineering, has been a long-tem advocate for positive user experience.

Apple‟s innovative and usable design allowed the company to dramatically improve their

bottom line. Not only are these companies in favor of providing improved UX for the end

user, but many other large corporations are changing and re-thinking their approaches

and processes to building better software products using proven heuristic guidelines to

develop UIs that provide a better UX for the end user [Error! Reference source not

found.].

Developing better software requires some form of methodology to insure that the

process of developing that software is not ad hoc in nature. An ad hoc approach may

work for smaller projects but simply doesn‟t work for today‟s larger projects [1, Error!

 2

Reference source not found.]. Agile methods
1

 are an alternative to traditional

approaches to building software, aimed at satisfying the customer. These approaches

strive to deliver better software by involving the customer, or customer representative,

closely throughout the development process and by delivering working software in small

iterations as quickly as possible. In doing so, the intent is that the customer receives the

product that they really want and need. This is achieved by continually being involved in

the process and seeing the product first hand [Error! Reference source not found.].

However, recently there has been some evidence that agile software development

practices alone do not always ensure that they build software that is usable and what the

end user wants and needs [Error! Reference source not found., Error! Reference

source not found.]. Although agile methods attempt to build better software for the

person paying for the software, the customer, this does not mean that it is better software

for the person that will actually be using the software, the end user.

Another approach to building software that is more usable is interaction design

(ID). This methodology places the end user as a key player in the UI design and

development process. The aim of ID is that the software meets the user‟s wants and needs

by employing user-centered design (UCD). Agile methods and ID have the same ultimate

goal: to build a product that is what the customer and user wants and needs. However,

interaction designers and agile developers approach building software from different

perspectives in terms of upfront resource allocation for design. In terms of design, agile

approaches address it from the perspective of the code. ID concentrates on design in

1
 Agile methods refers to the many similar but not identical approaches that make up this

methodology. For the purpose of this thesis “Agile methods” and “Agile methodologies”

will be used interchangeably.

 3

terms of how the UI is being used by the user to complete the required tasks. Agile

methods concentrate on expeditious delivery of working software to the customer with

minimal upfront design, whereas ID tends to allocate more time and resources for

research and user testing before a single line of code is written.

Because of differences in upfront resource allocation, these two approaches

appear to be very different and hostile in terms of cohabitation in the same software

project [Error! Reference source not found.]. However there is evidence that these two

approaches are being used together in industry today [Error! Reference source not

found., Error! Reference source not found., Error! Reference source not found.,

Error! Reference source not found., Error! Reference source not found.] but

relatively little is known about how these two software development processes are being

integrated in projects.

Our research aims to explore the way teams can combine elements of UCD and

agile methods in a way that maintains the benefits of both approaches. Specifically, the

aim is to take current research in this area and expand on it to describe a general

integration process that is common across multiple teams as well as multiple software

companies. In doing so, this research hopes to provide further valuable information that

may be helpful to teams in the software industry interested in combining these

methodologies in their current process.

1.1 Agile Methods

Agile methods are relatively new software development methodologies that are

quickly gaining popularity in the software industry [Error! Reference source not found.,

Error! Reference source not found., Error! Reference source not found.]. They are

 4

thought of as iterative, lightweight, people-centric processes. The common basis for the

numerous approaches of agile software development methodologies came into being in

February 2001 with the founding of the Agile Manifesto [1, 12, Error! Reference

source not found.]. The main values of the agile methodologies are:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

The manifesto also states: “while there is value in the items on the right, we value the

items on the left more” [Error! Reference source not found.].

These values are aimed at reducing the heavyweight software development processes

that preceded agile methods, such as the traditional Waterfall method, [Error! Reference

source not found.] as an answer to “the eager business community asking for a lighter

weight along with faster and nimbler software development process” [Error! Reference

source not found., Error! Reference source not found.]. For the purpose of this thesis,

the term heavyweight software development process refers to a software development

that relies heavily on processes and tools, comprehensive documentation, contract

negotiation, and following a static planning process.

1.2 Interaction Design

Interaction design is aimed at providing a better UX through a blend of analytical

and creative abilities that allow the user interface designer to solve problems relating to a

UI implementation [Error! Reference source not found.]. The successful

implementation of ID means the understanding of the user‟s wants and needs by the

 5

designer in terms of the product on which they are interacting within the workplace or at

home. By emphasizing and understanding the user‟s needs, the interaction designer can

solve the complex problems that are faced when trying to deliver a product that is a

usable one. It is important to note that good software usability is not a single dimension

or perspective. Jakob Nielsen [16 pp25] defines a product that is usable as one that should

have the following five attributes:

1. Easy to Learn

2. Efficient to Use

3. Easy to Remember

4. Few Errors

5. Subjectively Pleasing

In order to determine if a product is indeed usable, Nielsen suggests that the user, or a

representation of the user, must be part of the development process. He states that

usability is typically determined by employing a set of test users that are selected to

represent the intended users that will perform tasks on the system in question [Error!

Reference source not found.]. The above type of testing helps to determine if the

computer system meets the user‟s needs in terms of their interacting with the UI and it is

therefore user-centric in nature.

One perspective of computer science aimed at understanding how users interact with

computers is the study of human computer interaction (HCI). According to Preece,

Rogers and Sharp HCI is:

 6

“ concerned with the design, evaluation, and implementation of interactive computing

systems for human use and with the study of major phenomena surrounding them”

[Error! Reference source not found.].

HCI includes the practice of user-centered design (UCD), which involves the user

throughout the design process. The idea is to build an effective design that is suited to the

users needs by including the user in the design equation [Error! Reference source not

found., Error! Reference source not found.].

Like the waterfall methodology [Error! Reference source not found.], UCD also

aims at gathering relatively large amounts of information before construction of the code

begins. The idea is to obtain a strong understanding of who the user is and what the user‟s

tasks and needs are. This is achieved in an iterative manner by gathering contextual

information, applying it to create low fidelity prototypes and testing those prototypes

with the user before any implementation commences [Error! Reference source not

found.]. By including UCD practices in the design process, the end product generally has

improved usefulness and usability [Error! Reference source not found.].

1.3 Motivation for Research

At a first look, agile methods and ID have opposite approaches in terms of the

work that is being done up front before development begins. Agile methods approach

software design by eliminating a great deal of the up front resources allocated. For

example, one of the most commonly used agile processes is eXtreme programming

proposed by Kent Beck and Martin Fowler [Error! Reference source not found., Error!

Reference source not found.]. The approach used with eXtreme programming is one of

 7

short iterations with smaller feature sets and therefore fewer requirements collected

before implementation begins.

ID approaches design from the perspective of how the software is used by first

spending a considerable amount of time researching the users, their needs, the tasks they

need to perform and then iteratively testing a UI design. In his book, “The Inmates Are

running the Asylum”, Alan Cooper suggests that a fair amount of upfront research be

done before any implementation is conceived as an approach to ID [Error! Reference

source not found.]. His approach is to address user‟s behaviors and idiosyncrasies before

any development begins.

Although ID and agile approaches are very different, both of these methodologies

have the same goal in mind, and that goal is to build better software. As a result of this,

there has been an increase in interest directed towards how agile methods and ID can

both be employed on the same project to produce a hybrid methodology.

1.4 Research Questions

The purpose of this research study is to determine how, as well as when, Agile

methodologies are incorporating ID into the same software development process. In order

to explore how and when teams can combine elements of UCD and agile methods in a

way that provides the benefits of both approaches the following research questions are

addressed in our research.

 How are these two methodologies being combined given that they have very

different up front resource allocation techniques?

 What are the roles of the team members that are directly involved in the process

of combining these two methodologies?

 8

 What different strategies are being used to incorporate an ID process and agile

methods into the same software project?

 What effect does the integration of these two methodologies have on their original

approaches or processes?

By addressing these questions and building on existing research in this area it is the

intent of this research to construct a general integration process that can be used across

multiple teams as well as multiple software projects. In doing so, this research hopes to

provide a generalized roadmap for future software teams to integrate these two

methodologies into a single process.

1.5 Road Map

Chapter 2 gives a brief overview of the Waterfall software engineering process.

This is used to draw upon the motivation for the advent of the agile methodologies and

the similarities with methodologies discussed in this thesis. This is followed by

descriptions of agile methods as well as ID, more specifically user-centered design. It

then looks at existing reports on combining ID and agile methods.

Chapter 3 describes the research approach used during the study. This includes

the processes used to obtain the data and the different techniques applied to the data in

order to analyze it.

Chapter 4 presents the research findings in terms of how the two methodologies

are being aggregated in industry today. This includes the overall general process that is

being used as well as three refinements of that process specific to roles of team members.

This section discusses the different strategies that are being employed on software teams

and what dynamics emerge as a result.

 9

Finally, Chapter 5 provides a conclusion to the thesis. It includes an overall

conclusion, a discussion of the findings, limitations of the study, as well as future work

that may be of value.

 10

2.0 Background

This chapter provides background information for these software methodologies

that are directly associated with this research topic. Specifically these are a common

traditional software approach and the two methodologies that are the focus of this

research, agile methods, and Interaction Design (ID).

First, we discuss a traditional approach to software development, the Waterfall

methodology. This is intended to give the reader an idea how software has been delivered

in the past as well as the possible motivation for the focus of this research: agile methods.

This chapter then discusses the agile approach to software engineering as an

alternative to the traditional Waterfall approach. We specifically look at two of the more

popular processed of the agile space, Scrum and XP. Following the agile methods section

is an overview of ID and, specifically, User Centered Design (UCD). Next, we

investigate some of the issues with the amalgamation of Agile methods and ID. Finally, a

review of existing work is presented. This review will point out previous research

contributions that this thesis will build on as well as the perspectives not covered in that

previous research that are covered in this research study.

2.1 The Waterfall Approach

In an attempt to improve on ad hoc approaches to software development, the

notion of disciplined software engineering methodologies arose [1, Error! Reference

source not found.]. The aim was to make software development process more

predictable and efficient and, hence, adding some order of control over the process.

Fowler refers to this as planned design [1]. A disciplined model provides the software

 11

developers with a roadmap to produce the required software in a highly structured

manner.

One traditional engineering methodology for software development is often called

the “Waterfall” methodology first proposed by Royce in 1970 [Error! Reference source

not found.]. This methodology suggests following a predefined path, or steps, through

seven sequential stages of software development, gathering system requirements,

gathering software requirements, analysis, program design, coding, testing, and

operations.

Figure 1: The seven steps from the Royce Waterfall methodology

One property of this methodology is gathering all system and software

requirements, completing application analysis, and completing software design before

any coding begins [Error! Reference source not found.]. This leads to the allocation of

large amounts of upfront documentation, planning, and design prior to development.

 12

However, Waterfall methodologies “have not been noticeable for being terribly

successful. They are even less noted for being popular” in terms of an approach by the

individuals building software using this methodology [1]. This is possibly because of

their intensive bureaucratic structure that slows the development process down and adds

an extensive amount of documentation, which results in a considerable amount of up

front resource allocation.

The Standish Group‟s Chaos Report of 1995 suggests that in the United States

31.1% of traditional process software projects will be cancelled before completion. The

Standish group also estimated that in 1995 on average only 16.2% of software projects

were completed on time and on budget [Error! Reference source not found.]. This

suggests that alternatives to traditional software development processes are needed in

order to improve software development project success. Historically there were several

models available between Royce‟s waterfall model and the emergence of agile methods

including the Spiral model amongst others [Error! Reference source not found.]. We

use the waterfall model in this thesis as the extreme opposite to agile methods to

highlight the differences between the two methodologies.

2.2 Agile Methods

In February 2001 in the Wasatch Mountains in Utah, 17 people from various

software development backgrounds gathered to describe an alternative to document

driven, upfront resource heavy software development processes such as the Waterfall

approach [Error! Reference source not found.]. What emerged was the Manifesto for

Agile Software Development from several individual methods including Scrum and XP

 13

amongst others. This workshop defined the common ground for all these approaches and

gave them a common joint name which was agile methods. The aim was to uncover

“better ways of developing software by doing it and helping others do it” [Error!

Reference source not found.].

This new software development approach was geared toward being more adaptive

and receptive to change [1] rather than following the detailed rigid plan conceived prior

to development [Error! Reference source not found.]. In contrast to working in a

Waterfall like linear manner, agile methods favor an iterative process characterized by a

succession of incremental small releases containing a smaller set of features for that

specific iteration [Error! Reference source not found.]. This approach allows for

changing software requirements discovered during the iterative process. Close customer

contact during the iterative development process supports this flexibility.

 Iterations string together mini-projects to form the bigger application over the

course of the time of the software project. At the beginning of the two to four week

iterations, the requirements for the products features are gathered by the developers from

the customer representative. The requirements are prioritized and selected for that

iteration. At the end of the iteration the features are demonstrated for approval [Error!

Reference source not found.].

By building these mini-projects, agile methods seek to produce finished code that

is more valuable for the customer than a document. Larger projects could be split into

these mini-projects that are started, finished and tested, and delivered to the customer on

a regular basis [Error! Reference source not found.].

 14

Because developing software is different from project to project, the context of the

development situation changes from project to project in terms of processes and project

environment. The principles behind the Agile Manifesto aims to help software

development to succeed in changing and unpredictable environments that are common-

place today [Error! Reference source not found.]. The Agile Manifesto was conceived

by industry people from varying software processes aiming at combining these different

processes into agile methods. Some of these processes include Crystal, RUP, eXtreme

Programming, Lean Development, Scrum, and Feature Driven Development [Error!

Reference source not found., Error! Reference source not found.]. Two of the more

popular agile methods components being practiced today are eXtreme Programming and

Scrum [Error! Reference source not found., Error! Reference source not found.] and

were used by the participants in this study. For this reason the next two sections will

briefly look at these two processes.

2.2.1 eXtreme Programming

 The first of the two specific practices used by participants in this study used was

eXtreme Programming. Kent Beck first coined the term, eXtreme Programming (XP) in

his 1990 publication, “eXtreme Programming Explained: Embrace Change”. Beck

explains, “XP is a light-weight methodology for small-to-medium-sized teams

developing software in the face of vague or rapidly changing requirements” [Error!

Reference source not found.]. XP can be further broken down into components, values

and practices.

 15

XP originally had four values [Error! Reference source not found.] and later in his

second edition Beck introduced a fifth value [Error! Reference source not found.].

These values are open communication, simplicity in design, constant feedback, courage

to address change, and respect for all members on the team. Beck states:

“We want to do everything we must do to have to have stable, predictable software

development”.

To do this Beck uses the five values above to build a discipline of software

development through a set of twelve activities or practices from the first edition of

Extreme programming explained [Error! Reference source not found.] and adds an

additional thirteen practices from the second edition [Error! Reference source not

found.]. These practices are employed in order for software teams to have some control

and guidance over the work they do [Error! Reference source not found.]. The

practices that were most relevant in the course of this research were:

 The Planning Game This is combining technical estimates with the overall

business priorities in order to quickly determine the scope of the next release.

 Small Releases Small releases are used containing the requirements with the

highest business value for the customer.

 Simple Design The correct design for software is a design that will:

o Will run all of the tests

o Does not contain duplicate logic

o Asserts all intentions essential to the programmers

o Has the minimal amount of methods and classes necessary

 16

“Every piece of design in the system must be able to justify its existence

on these terms”

 Testing All program features must have, as well as pass, automated tests to be

considered part of the application.

 On-site Customer Having a customer collocated with the development team

aids the developers in terms of answering questions relating to the product

design, resolving differences that arise, or dealing with feature prioritization.

 Whole Team A team should include people with all the skills necessary for

the project to succeed.

 Incremental Design Designing regularly to make improvements to the

design helps reduce the cost of changing the system.

To build better software, XP also has certain roles that team members play.

People on an XP team should fit the role they have and the rest of the team should be

aware of that individual‟s role at any given time [Error! Reference source not found.].

The idea is that everyone contributes the best he or she has to offer to the team. The key

roles Beck mentions are the programmers, customer, and the tracker/coach. These were

evident in the roles that were being employed by teams in this research study.

2.2.2 Scrum

The second practice the agile teams participating in this study employed was Scrum.

The Merriam-Webster defines Scrum as [Error! Reference source not found.]:

1. a: a rugby play in which the forwards of each side come together in a tight

formation and struggle to gain possession of the ball using their feet when it is

 17

tossed in among the; also : the arrangement of players in a scrum b: usually a

brief and disorderly struggle or fight

Ken Schwaber, a co-founder of the Scrum approach to software development, defines

Scrum as “an iterative, incremental process for developing software in chaotic

environments” [Error! Reference source not found.].

 Scrum is a process that was first used in Japan for hyper-product development in

1987 by Ikujiro Nonaka and Hirotaka Takeuchi [Error! Reference source not found.].

The process was called Scrum because of the close resemblance to some of the qualities

of the game of rugby. Both the game and the development process posses the ability to be

adaptive, quick, self-organizing, and have few rests [Error! Reference source not

found.].

Scrum is a team management and control process that strives to cut through the

complexity and allows focus on building software that meets business needs [Error!

Reference source not found.]. The process focuses primarily on the team level, allowing

them to control the building of software in the manner that they choose [Error!

Reference source not found.]. The roles on a Scrum team are the Scrum master which is

a management role, the product owner, and the Scrum team, which is typically made up

of cross functional members that bring the necessary skill sets to a project. [Error!

Reference source not found.]:

Scrum teams work in an iterative manner during the software development process.

These iterations are called Sprints. A Sprint is a fixed period of time in which the Scrum

Teams work on completing the commitments of the Sprint goal. The Scrum Team is free

to accomplish this goal as it sees fit. Typically, a Sprint is thirty calendar days. During

 18

the Sprint, the team has two mandatory accountabilities; daily Scrum meetings must be

attended by all Scrum Team members and the Sprint backlog must be kept up-to-date and

reflect an accurate and evolving picture of the team‟s work.

The diagram below represents the overall scrum process from inception of the

product vision, the creation of the Product Backlog, the Sprint Planning Meeting, the

selection of the Sprint backlog, the Sprint and finally the Sprint Review meeting.

Figure 2: Overview of the Scrum process [Error! Reference source not found.]

In the next section, this thesis discusses Interaction Design.

2.3 Interaction Design

 According to Cooper “Interaction Design is a tool for knowing what the user

wants” and knowing what the user wants allows for building software that is of value to

the user as well as the company building it. He also states that in doing so you will reach

your market and enjoy better consumer loyalty [Error! Reference source not found.].

 19

Rogers, Preece, and Sharp define Interaction Design as “designing products to support

people in their everyday and working lives” [Error! Reference source not found.].

Bacon states that Interaction Design is a specialized design field that practices iterative

problem solving using a blend of analytical and creative abilities to aid people in

achieving what they want or need to do during work or play [Error! Reference source

not found.]. However, just adding functionality to an application in an attempt to help

the user complete their daily tasks does not mean it is more useful. In his book, The

Design of Everyday Things, Norman remarks “The same technology that simplifies life

by providing more functions in each device also complicates life. This is the paradox of

technology [Error! Reference source not found.]. The overall user experience is also

important, or as Nielsen states, using a product should be subjectively pleasing [Error!

Reference source not found.].

Defining what user experience is has proven to be difficult with many different

definitions arising from different sources [Error! Reference source not found.]. For

example, Alben‟s definition of user experience is: “All the aspects of how people use an

interactive product: the way it feels in their hands, how well they understand how it

works, how they feel about it while they‟re using it, how well it serves their purposes,

and how well it fits into the entire context in which they are using it” [Error! Reference

source not found.]. Hassenzahl and Tractinski describe the user experience as a

consequence of a user‟s internal state (predispositions, expectations, needs, motivation,

mood etc), the characteristics of the designed system (e.g. complexity, purpose, usability,

functionality, etc) and the context (or the environment) within which the interaction

 20

occurs (e.g. organizational/social setting, meaningfulness of the activity, voluntaries of

use etc) [Error! Reference source not found.].

To better understand user experience issues there has been much study for some

time by the HCI community [Error! Reference source not found.]. One approach to

HCI is User-Centered Design (UCD).

The participants in the current study all integrated UCD into their development process

and the following sections discuss the HCI and the UCD approach to UI design.

2.3.1 HCI

The Curricula for Human-Computer Interaction defines HCI as: “human-computer

interaction is a discipline concerned with the design, evaluation, and implementation of

interactive computing systems for human use and the study of major phenomena

surrounding them” [Error! Reference source not found.]. HCI strives to enhance the

interaction between humans and computers and make technology easier for them to use

[Error! Reference source not found.]. This implies that HCI strives to make software

applications usable.

2.3.2 Usability

As discussed in section 1.2, Nielsen‟s definition of usability had five attributes.

He states [Error! Reference source not found., pp-25]:

“Only by defining the abstract concept of usability in terms of these more precise

and measurable components can we arrive at an engineering discipline where

usability is not just argued about but is systematically approached, improved, and

evaluated (possibly measured)”.

 21

There is an increasing awareness in the software industry that usability is a quality

attribute and should be addressed during development [Error! Reference source not

found., Error! Reference source not found., Error! Reference source not found.].

There are a number of HCI techniques available that help developers deal with usability

issues that appear during the software development process [Error! Reference source

not found.]. This thesis looks specifically at one such HCI practice, UCD, which was

employed by the participants in this study to mitigate usability issues in their software

development process.

2.3.3 User-Centered Design

Vredenburg et al. present their working HCI definition of UCD as [Error! Reference

source not found., pp 471-478, Error! Reference source not found., pp-12]:

“UCD is herein considered, in a broad sense, the practice of the following

principles, the active involvement of users for a clear understanding of user and

task requirements, iterative design and evaluation, and a multi-discipline

approach”.

Barnum contends that UCD is [Error! Reference source not found., pp 187-188]

“a shift in product design away from a validation of features and capabilities to a

focus on the user‟s perceptions of usefulness and feelings of satisfaction has come

a change in terminology from product usability to user-centered design".

While Constantine states: [Error! Reference source not found., User-Centered

Approaches]

 22

 “UCD in practice is a rather cluttered collection of loosely related techniques

and approaches having in common little more that a shared focus on users, user

input, and user involvement. While it may be different things in the hands of

different practitioners, at its core, user-centered design is distinguished by a few

common practices: user studies, user feedback, and user testing”.

UCD is based on three kinds of design activities [Error! Reference source not found.,

pp 187-188]. The first involves an early focus on users and tasks, in order to understand

the users, the tasks they perform, and the environment in which the tasks are performed.

The second set of activities involves empirical measurement of product usage to provide

information about how easy is it to use, how easy is it to learn, and any other usability

issues relating to the use of that product. The final activity involves,

“iterative design that fixes the problems found by the users in usability testing as

part of the product development life cycle”.

In his early work, Gould contends there are four principles for the usability design

process in terms of HCI [Error! Reference source not found.]. These are:

1. Early and continual focus on the user.

2. Early and continual user testing.

3. Iterative Design.

4. Integrated Design. Every aspect of usability should evolve in parallel.

It is clear the above principles are being translated into the software industry. This

was very clear in the processes carried out by participants in this study as well as these

same principles being implemented in other large companies in industry. In 1999 IBM

alone had “25 UCD labs worldwide with a total of 78 lab cells” [Error! Reference

 23

source not found., pp 67-71]. Mao, Vredenburg, Smith, and Carey conducted a survey

with 103 respondents with UCD related backgrounds that were currently employing UCD

practices. Their survey findings suggest that using UCD methods generally improved the

end product. They also found that Contextual Inquiry, Iterative Design, and Usability

Evaluation were considered the most important practices [Error! Reference source not

found., Error! Reference source not found.].

The above principles and practices, suggest two main practices used in UCD,

contextual inquiry and usability testing, both of which were employed by participants in

this study.

 Contextual inquiry refers to a designer taking an ethnographic study approach to

better understand the users of a particular product [Error! Reference source not found.].

Raven and Flanders, among others, suggest that Contextual Inquiry is used to understand

your users or audience [Error! Reference source not found., Error! Reference source

not found., Error! Reference source not found.]. Typical activities include contextual

interviews, observation, reconstruction of previous events or tasks performed, and

discussions with the users.

Usability testing, as the name suggests, refers to testing a software product with users

or user representatives to determine how usable a software product is. This process can

be broken down into two parts, prototyping and testing.

According to Nielsen, it is essential not to design a full-scale implementation of a

product based on early designs [Error! Reference source not found.]. Instead Nielsen

advocates using quick, cheap, throw-away prototypes of the system which can be used

for early evaluation of the system. These prototypes can be developed quickly and hence

 24

can change many times over the course of design until a better understanding of how the

UI will work is achieved. There are five central aspects to prototyping [Error! Reference

source not found., Error! Reference source not found.]:

1. Vertical Prototyping refers to the amount of working functionality that a

prototype has. The more functional features a prototype has, the greater degree of

Vertical Prototyping it has.

2. Horizontal Prototyping is tied to reducing the functionality while increasing the

features. A prototype with a large number of features with little or no

functionality has a high degree of horizontal prototyping. Figure 4 demonstrates

both Vertical and Horizontal Prototyping.

3. Low Fidelity Prototyping refers to working with low tech mediums such as paper

and pencil, sticky notes, story cards, cut-and-paste drawings or any medium that

is quickly produced and therefore can be easily discarded. Low fidelity prototypes

are an example of a high degree of horizontal prototyping and a low degree of

vertical prototyping.

4. Medium Fidelity occurs when a prototype has both features and functionality of

the finished product. At this level, typically the UI has been partially developed

features and some features that have not been developed or are non-working. This

would be a good example of the prototype having some Vertical and Horizontal

Prototyping properties.

5. High Fidelity Prototyping refers to a prototype that is very close to, or possibly is,

the finished version of the working UI. It has most or all of the functionality of

 25

the intended application. This would be a good example of the prototype having a

high degree of both Vertical and Horizontal Prototyping properties.

Figure 3: Vertical prototyping representing functionality versus horizontal prototyping representing

different features. The example above is shown where the two meet and consists of performing some

task and the functionality to perform that task represented by the cross hash in the small box[Error!

Reference source not found., Error! Reference source not found.]

Usability testing can take on many forms. Traditionally in the late 1980‟s UI

testing was expensive and time consuming [Error! Reference source not found.].

Typically there were between 30 and 50 subjects, under the observation of psychologists,

used to ensure that data was statistically valid. Given the time and the professionals

involved in this type of study, cost often made it prohibitive for smaller scale projects. To

deal with this, Nielsen came up with the notion of “discount usability”. The idea behind

discount usability is to focus on what your resources will allow. Using some usability

testing practices is better than none at all [Error! Reference source not found.].

 26

Perhaps the simplest, inexpensive, and most popular method of gleaning feedback

is heuristic evaluation. Heuristic evaluation is one of Nielsen‟s methods of discount

usability [Error! Reference source not found.].

“Heuristic evaluation is a method for finding usability problems in a user

interface design by having a small set of evaluators examine and judge its

compliance with recognized usability principles (the „heuristics‟)” [Error!

Reference source not found.].

To perform this type of evaluation, an evaluator critiques an application against a

list of predetermined heuristic guidelines. This greatly reduces errors in design before

any formal testing techniques are employed. This technique is performed without end

users present. Once a heuristic evaluation has been completed, formal testing can

commence [Error! Reference source not found.].

One form of formal testing is cognitive walkthroughs.

“A cognitive walkthrough is a usability inspection method designed to evaluate

ease of learning, particularly by exploration” [Error! Reference source not

found., Error! Reference source not found.].

Typically a user is asked to complete a predefined task in order to determine if the

outcome is what the evaluator expects [Error! Reference source not found.].

Another commonly used approach to usability testing is called Wizard of Oz

testing. This is little more than a test subject interacting with a mock user interface which

is being manipulated by “the man behind the curtain”. For example, when a user is

interacting with paper prototypes the testing facilitator switches between pages to

 27

simulate UI functionality. This greatly reduces cost in terms of making a fully functional

hi-fidelity prototype [Error! Reference source not found.].

Focus groups, another valuable technique, typically consist of between six and

twelve people chosen from a group of people representing typical users [Error!

Reference source not found.]. The group can spontaneously discuss or react to an

application‟s design before or after it is built. The information gathered can be used by

the developer to hash out a better design. One of the dangers in using this particular

technique is that there is no guarantee that the users know what they want or if what they

want is even possible [Error! Reference source not found.]. However, as Nielsen

proclaims, “some data is better than no data” [Error! Reference source not found., pp

23-27] and the above danger is therefore worth the risk.

During the course of this research all of the participants practiced some or all of

the above techniques during their software development process.

2.4 Agile Methods and User-Centered Design

Recently there has been some interest in how UCD and Agile methods can be

used together on the same software development project [Error! Reference source not

found., Error! Reference source not found.].

The Extreme Programming vs. Interaction Design debate between Kent Beck, the

father of eXtreme programming, and Alan Cooper, a prime proponent of interaction

design, added interest in this area. Cooper argues that interaction design should be

completed before the actual code is written. Beck, on the other hand, argues that

completing all the interaction design up front creates a bottleneck for the developers and

 28

that development should begin before design is complete [Error! Reference source not

found.]. However, section 2. discusses acquiring a small set of requirements for a small

set of features that can be implemented as quickly as possible. From a textbook

perspective both of these methodologies seem to be complete opposites. However, these

two processes do have some similarities.

For example, both processes are human centric, as discussed in sections 2.2 and

2.3. Agile methods strive to build customer satisfaction by keeping the customer in the

development loop. This way the customer is constantly seeing the features and

functionality as they are rolled out for approval. Interaction design, on the other hand,

attempts to provide improved user experience by building a more usable user interface.

Another similarity is that both these methodologies are iterative in nature. However, they

both iterate over different artifacts. Agile methods iterate over application code, where

interaction design iterates over user interface design.

In order to understand how the above concerns have been addressed, it is

important to examine existing related work. The following section addresses this.

2.5 Related Studies

Recent research examines the integration of UCD with Agile methods to

determine if and how these two approaches can cohabitate on the same software project.

The publications discussed here show what previous work has been done in the area that

is pertinent and directly related to this research study. They are briefly compared with

some of our findings that are later discussed in more detail in the Findings section of this

thesis, page 54.

 29

Patton discusses the motivation for adapting UCD practices into his agile

development process [Error! Reference source not found.]. His development team was

using eXtreme Programming (XP) practices similar to the practices being employed by

participants in this study. The team included expert end-users that were product managers

working for the same company. They were building software using an agile approach at

an aggressive rate with “deliveries that were on time and the expected scope intact.”

However, they found that the resulting product had features that the end-user did not

want and was missing features that the end-user did want. In an attempt to correct this

problem, Patton describes a ten-step ID process that he and his team added to their

current development process to produce an Agile Usage Centered Design process.

His process identified roles that were included in the design process [Error!

Reference source not found.]. However his process did not include a UCD specialist

(UCDS). Instead, his team was responsible for the UI design and the UCD practices

associated with that process. This approach was similar to one of the approaches

discovered in our research. We found that some of the teams our participants worked

with did not have a UCDS on their team before and during development. Instead their

teams were responsible for the UCD practices which seemed very similar to Patton‟s

approach.

Overall, Patton stated that he and his team were satisfied with the results of their

process. He does not claim that his process builds better software but rather that it did

leave his team with valuable tacit knowledge. What his publication does not cover is the

actual process being implemented throughout the entire lifecycle of that software project

from beginning to end. Instead his publication provides a snapshot into a portion of his

 30

software lifecycle process where ID is implemented and not in the project‟s entirety.

This is an area that this research intends to build on and provide some insight into.

Patton‟s process also closely resembles Constantine‟s ten-step usage-centered

design process that was originally conceived as a lightweight Agile UCD approach

[Error! Reference source not found.].

Constantine suggests that his process is lightweight in terms of typical UCD

upfront resource allocation. Constantine‟s process may be lightweight as opposed to

previous UCD processes, but his process still champions doing all the design work

upfront. His paper outlines the ten-step process but lacks empirical evidence or case

studies directly tied to his process [Error! Reference source not found.].

In their practitioner‟s report, Meszaros and Aston [5] describe the process they

used in including usability testing into an Agile methods project. Like Patton‟s approach,

Meszaros and Aston did not include a UCDS role on their team.

 Meszaros and Aston had developers on their team acting as the UCDS. Their

approach included typical UCD practices such as low fidelity prototyping and usability

testing to determine a final UI design. This process meant that the developers were also

the UCDS like some of the participant‟s teams in our study [Error! Reference source

not found.].

Meszaros stated that adding UCD practices was of value to his development process.

In fact he makes the claim that is partially the motivation for this research:

“Emergent design doesn‟t work well for user interfaces when using Agile practices

alone. Some design up front seems to provide better guidance to the development team

 31

and provides earlier opportunity for feedback” [Error! Reference source not found.,

pp 289-295].

His paper discusses the implementation of their process over a short period of time -

which does not support an overview of their complete software development process

lifecycle.

Ferreira, Nobel, and Biddle investigate four different projects that employed Agile

methods iterative development and UI design [Error! Reference source not found.].

Their approach is qualitative in nature using grounded theory similar to the approach

used in the current study.

Their paper briefly describes the roles of the team members in the four projects

[Error! Reference source not found.]. In projects one, two, and four, the teams

consisted of developers and a UCDS, case three had a developer acting as the UCDS. In

the three cases that employed a UCDS, the UCDS interacted with the customers to derive

the interface design requirements. In the case where no UCDS was used, one of the

developers, whose main interest was UI design, interacted with the customer.

The paper very briefly discusses the processes and the roles that the different teams

used. However, given the length of that particular publication, providing detail was not

possible. More detail may have given more insight into a generalized approach of all four

projects integrating these two processes [Error! Reference source not found.].

In her publication “Interaction Design and Agile Development: A Real-World

Perspective”, Ferreira [58] goes into much greater detail of the Agile Interaction design

 32

integration. This study dealt with 9 teams integrating Agile methods and ID. She

discusses two main design strategies, the Comprehensive and the Evolutionary strategy.

The Comprehensive strategy refers to the big design up front (BDUF) wherein a

very large part of the UI design is completed before implementation begins. In fact she

states that

“Teams that subscribed to this view completed their UI design such that it was a

representation of the entire system under development”.

However, in our study, we found that none of our participants performed

extensive upfront UI design for the entire system prior to development.

The Evolutionary strategy refers to teams coding and designing small sections of

the application at a time. It then slowly evolves into the finished design and application.

She states that

“Participants who subscribed to this view produced a UI design that only

implemented the features from previous iterations and the features that had been

selected for a set number of iterations ahead”.

This strategy closely resembled the findings that the participants followed in our

study.

Ferreira also discusses 3 implementation strategies, the Refinement, the Parallelization,

and the Looking Ahead strategy.

The Refinement implementation strategy was typically used in conjunction with the

Comprehensive design strategy. Most of the UI design work was done upfront and the

minor details or changes in the design were completed during the iterations that followed.

In her words

 33

“the comprehensive UI design created up front was refined during the iterations,

successfully transforming it into an „implementable‟ interaction design”.

Although our study did not show that the participants were employing Ferreira‟s

Comprehensive design strategy, all of our participants did employ a refinement factor

into their design implementation process.

The Parallelization implementation strategy referred to the development

implementation and UI design being done in parallel.

“As the developers iteratively implemented the system, the UI was iteratively designed

and evaluated separately”.

In other words interaction design is done in parallel with development. This was

confirmed in our research. Ferreira also states that

“applying the Parallelization strategy appeared to be independent of whether or not a

comprehensive interaction design had been created up front”.

Although none of the participants in our study were employing comprehensive

interaction design up front, all of them did somewhat follow the Parallelization

implementation strategy.

The Looking Ahead implementation strategy refers to the ID person(s) designing

iteration(s) ahead of the development implementation schedule. Ferreira states

“Looking Ahead implementation strategy was characterized by the interaction

designers creating a design for a fixed number of iterations ahead (usually one or two

iterations ahead) of the developers implementing the current iteration”.

This is another facet of Ferreira‟s work that closely matched the findings with our

participants. All of the UCD specialists or acting UCD specialists designed at least 1

 34

iteration ahead of the development iteration. In some cases it was 2 iterations ahead. The

Looking Ahead implementation strategy findings also match those of Sy [6] that we

discuss below.

Although Ferreira‟s work outlines a great deal of detail in terms of the strategies used

it does not abstract those findings to an overall general process based on the similarities.

Our thesis looks at abstracting the similar facets uncovered in the data to generalize a

higher-level model of the agile methods development and UCD integrations.

Ferreira‟s thesis also concentrated heavily on the processes and strategies whereas our

study concentrates on individual team members roles and how they affect the processes

and strategies of agile methods and UCD integration.

Finally, Sy describes the process of integrating UCD with agile methods currently

being successfully adopted by Autodesk [Error! Reference source not found.]. The

findings in this thesis closely resemble Sy‟s process described in her publication. In

Autodesk‟s process, Sy refers to iterations on design as “cycles”. Cycle zero is used to

acquire initial information about the project by conducting a contextual inquiry.

According to Sy, contextual inquiry refers to a designer taking an ethnographic study

approach to better understand the users of a particular product. It is important to note that

our study addresses the interaction between UCD and development practices and not the

business decisions that are made prior to design. For example, we do not take into

consideration business feasibility studies as part of the actual design process [Error!

Reference source not found.]. Typical activities include contextual interviews,

observation, reconstruction of previous events or tasks performed, and discussions with

the users [Error! Reference source not found.].

 35

If the team is refining an existing product, cycle zero is used for “the alignment of all

team members‟ understanding” and for developing an overall vision for that project. If it

is an ongoing project, the UI design is derived by performing UCD testing on the

previously completed implementation cycle along with the previously performed

contextual inquiry. An initial design is conceived and sent for implementation by the

developers in cycle one [Error! Reference source not found.].

Once in cycle one, the UCDS designs prototypes and conducts usability testing to

refine the design for cycle two as well as conducting contextual inquiry for cycle three.

Upon the completion of cycle one, the implemented code is passed from developers to

the UCDS and the UI design is passed to development for implementation for cycle two

[6, pp 112-132].

“This pattern of designing at least one cycle ahead of the developers, and gathering

requirements at least two cycles ahead, continues until the product is released”

allowing development and UCDS to work in parallel throughout the projects cycles

[Error! Reference source not found.].

Figure 4: An illustration of Sy's Autodesk Agile UCD integration process [6].

 36

Sy‟s paper provides a detailed view of the process that is used at Autodesk. The

process is very much in keeping with some of our findings in terms of a general approach

to integrating these two methodologies. We discuss this further in our Findings section.

However, although the description of the process is detailed, it is the study of how one

company is adapting these two methodologies and is therefore restricted to that company.

Does this mean that the approach she is using is adaptable for other companies? In our

study we investigate methodology integration based on multiple companies to determine

if it is successful in more than one company.

All of the above previously related works are similar in that they all target how agile

methods are integrating usability practices into their software development processes.

There has been other previous work that involves bringing UCD practices into a software

development project. This is described in section 2.5.1 in more detail.

2.5.1 Adding UCD Practitioners

Another aspect uncovered in this research was that adding UCD and the UCD

practitioners to a project is not without its challenges and strategies. The following

related studies serve as a comparison to some of our findings. Because at this time there

is little or no published research in terms of when to bring a UCD process and

practitioner into an agile project, we use the following studies only to briefly draw

comparison with our findings which are discussed in more detail in the Findings section.

Venturi and Troost investigate how the User-Centered Design approach is being

integrated into industry settings. The research data consisted of web surveys taken by 83

UCD practitioners with UCD experience from 3 to 15 years employed at companies that

varied in size. Sizes spanned from large corporations (Financial, Computer,

 37

Telecommunications etc.) to small consultancies. Their research was aimed at

determining critical issues that enable usability practitioners to avoid usability outcomes

that may be poor. One issue was management understanding the value of UCD practices

in a project.

According to Venturi and Troost, their findings also showed “UCD is particularly

employed in big companies.” However, their findings were not specific in terms when the

UCD persons were brought in to the project. However, the authors also claimed that there

is a very small ratio of UCDS versus the overall number of employees but this topic is

left for later work [Error! Reference source not found.]. Although this work shows that

the majority of project managers believed that UCD should be part of the design

development process, it does not specifically discuss when the management feels it

should be included in a project. Our findings addressed this question. The work also does

not specify if the individuals surveyed were on agile teams or more traditional teams. Our

study only dealt with agile teams.

Gulliksen et al. surveyed 192 usability professionals in Sweden to determine some of

the development processes that involved UCD [Error! Reference source not found.].

The software processes used on the projects were predominantly RUP, a variant of RUP,

or XP. Their study showed that there were 5 key factors regarding what is needed for

usability practices to be effective on a project. They were that usability be part of the

project from the start, support form project management, support from the users, support

from management, and acceptance from the developers. This was consistent with what

we found with some of the participants in our study as well.

 38

Gulliksen et al. also see education and raised awareness of UCDS inclusion as an

important facet in the success of usability practices being integrated into software

development. This was also a common factor that we discovered I our research.

Although this work uncovers interesting findings, it does not address strategies for

usability integration in any detail. In other words. although most of the participants

believed that usability should be part of the process they did not specify if that it was

used all the time nor when usability team members were brought in to a project [Error!

Reference source not found.].

 Bruno and Dick‟s work elicited data from 14 usability practitioners in a qualitative

study using a grounded theory approach [71, pp 261-264]. Their aim was to try to

understand what was critical in providing good usability in a product in an industrial

setting according to the individuals responsible for employing the usability practices.

The major finding from this research was

“that an iterative usability process of research, design and evaluation stages needs

to be implemented though the project lifecycle”.

 Their findings also showed the importance of “Evangelizing” usability practices to

other team members to gain credibility. The outcome was a finding that speaks to

including an iterative usability process including research, design and evaluation stages

throughout the lifecycle of a product. These three practices were also used by the teams

throughout their development process uncovered in our research.

 However, they did not compare other usability strategies in terms of issues relating

to adding these practices after the project had begun. In other words, the paper does not

discuss any of the problems related to bringing a UCDS into the project after it had begun

 39

[Error! Reference source not found.]. Our study, on the other hand briefly explores

some of the problems UCD practitioner participants encountered when they were brought

onto an agile project after that project had begun.

 Finally, Rosenbaum presents a paper that describes the organizational approaches

and usability practices that HCI professionals consider to be of value in terms of

increasing usability research within companies [Error! Reference source not found., pp

337-344]. The researchers gathered data through surveys from 134 HCI professionals at 3

conferences in order to gain an understanding of the insights and advice related to

specific obstacles offered by participants. Rosenbaum et al. discuss the notion of

“strategic usability”. They define this as

“Embedding usability engineering in the organizational processes, culture, and

product roadmaps. In strategic usability, usability data contributes to corporate-wide

decision-making, such as product priorities and make vs. buy decisions”.

Rosenbaum‟s data revealed that the obstacles preventing greater strategic impact of

usability engineering within the organizations was based on lack of communication and

the education of its value.

 Although the paper speaks to “strategic usability” the strategies in the paper are not

specific to the timeline for when usability is added to an agile process. Their findings do,

however, speak to some of the issues pointed out by some of the UCD practitioner

participants in our study. For example, lack of early involvement, lack of knowledge and

understanding, and resistance to UCD practices being brought onto a project, were all

concerns or issues that were revealed by the participants in our study as causes for some

 40

resistance in terms of UCD agile practices integration.

2.6 Chapter Summary

This chapter presented the background necessary to understand our study. It

investigated the traditional approach to software development and its successor, agile

methods, to demonstrate why this newer approach to software development is being used

in ever increasing instances. The chapter broke down agile methods into its two most

popular facets being practiced in industry today; eXtreme Programming and Scrum. This

was followed by a high level discussion of Human Computer Interaction which was

followed by a brief discussion of usability and User-Centered Design. Next, the chapter

discussed the possibility of agile methodologies cohabiting with User-Centered Design

on the same software development project. Finally, this chapter discussed the existing

related work in terms of how a UCDS was being added into existing software

development projects to determine if the same issues arise on agile projects. Chapter 3.0

discusses the research method used in this study and presents the collected data.

 41

3.0 Research Method & Data Findings

This chapter discusses the research approach taken by this study. We discuss why

qualitative research is suited well for this study. Next a brief overview of the grounded

theory approach is given. Following this, the data collection process is described. The

chapter continues with a description of how a grounded theory approach was applied in

this study. This includes the three coding processes applied to the data; open, axial, and

selective coding. Finally, the validity of the study is discussed followed by a conclusion.

3.1 Qualitative Research

In the past, there has not been a universal definition of what qualitative research is

[Error! Reference source not found.]. For the purpose of this thesis, the definition put

forth by Gorman and Clayton will be used and it states [Error! Reference source not

found., pp-1]:

 42

“Qualitative research is the process of inquiry that draws from the context in

which events occur, in an attempt to describe these occurrences, as a means of

determining the process in which events are embedded and the perspectives of

those participating in the events, using induction to derive possible explanations

based on observed phenomena.”

The main strength of qualitative research is its ability to be subjective with the

essence “to capture life as it is being lived”. Qualitative researchers argue that the human

experience cannot “be described using numbers or can adequately be explained by

manipulating, measuring, or controlling variables” [Error! Reference source not

found., 566-569].

The research approach reported in this thesis was qualitative in nature. It was

clear from the beginning that a quantitative approach would not be possible. Quantitative

research requires controlled environment experiments and relies on data gathered from a

random sampling of participants. This study relied on data derived from processes that

occurred in non-controlled environments, such as industrial software teams. The other

consideration that made qualitative research a fit for this study was that, because

participants with Agile and UCD experience were difficult to find, they were not

randomly selected.

Because every software project is different [Error! Reference source not found.]

and to get “a full understanding of a social system like a software development, one needs

qualitative research in order to get a holistic understanding of what the important factors

are and how they may influence” [Error! Reference source not found., pp 1-6]. For

 43

these reasons, the choice to use qualitative research was the most appropriate for this

study.

3.2 Grounded Theory

As mentioned in Section 3.1, the decision was made to use a qualitative approach for

this study. More specifically, we choose a grounded theory approach. The grounded

theory approach consists of iterative data collection and analysis with the goal of

producing a theory to explain a situation of interest. Powel defines Grounded theory as:

“Studies that seek to inductively and systematically develop taxonomies and

theories through intensive analysis and coding of descriptive data about

phenomenon under investigation; theories emerge through iterative, constant

comparison of concepts and categories against data said to be grounded in given

naturalistic settings being investigated” [Error! Reference source not found.,

pp 91-119].

Because very little information existed in terms of how agile methods and UCD

were being integrated, I had little idea of how these processes were being integrated and,

thus, had no preconceived idea of how this was being done going into the study.

Grounded theory relies on the researcher beginning a study without preconceived theories;

instead it lets the researcher analyze the data to construct the theories or find themes

[Error! Reference source not found.]. This is achieved in an iterative manner by

gathering data, applying coding procedures to the data, and analyzing the data. These

concepts are discussed in the following sections.

 44

3.2.1 Data Collection: The Interviews

In order to ground concepts in data, first the data must be gathered. One way to

achieve this is with participant interviews that can be transformed into meaningful data

by way of transcription and coding procedures. Coding procedures allow the researcher

to [Error! Reference source not found.]:

 Build rather than test theory

 Provide researchers with analytic tools for handling masses of raw data

 Help analysts to consider alternative meanings of phenomena

 Be systematic and creative simultaneously

 Identify, develop, and relate the concepts that are the building blocks of theory

In order to acquire the data, the study conducted in-depth, semi-structured interviews

either face-to-face, by telephone or using a computer application, Skype. The interviews

included 13 participants from Canada, the United States, and Europe. The interviewees

were recruited through networking with professionals in academia, industry, and the

Yahoo Agile-Usability users group.

A semi-structured interview combines predefined, structured, open-ended questions

with the flexibility to ask subsequent questions during that interview. The interviews

were conducted at the interviewee‟s convenience. Interviews performed lasted between

28 and 62 minutes. The predefined questions were meant to be very broad in nature in

order to provoke further more detailed questions. The predefined questions progressively

got finer in terms of granularity. The questions divided the interview into four main

portions. The four main questions were:

 45

 What is your background in terms of employment, or project types you have

worked on, and education/training?

 What are the activities surrounding your software development approach?

 How are the activities put together to fit into your software development process

from beginning to end?

 How did you include agile methods/ UCD in your process?

Each of these four questions always lead to a subset of questions conceived in terms

of the answer given by the participant that varied from participant to participant. New

derived questions were added to interviews that followed as the interview/data analysis

iterations continued. These questions arose when the participant made an interesting

remark during the interview and were then added to the sub list of questions and used in

the interviews that followed.

For example, when P5 was asked what are the activities surrounding your software

development approach a portion of her answer was:

” There is sort of an „us and them‟ type of mentality that seems to exist.

You do get Agilest
2
 who have worked successfully with usability people or

design people. But frequently you get that sort of we know what we are

doing and you get these usability people coming in and they slow us

down”.

The interesting part of this data was the comment referring to „us and them‟. This

led to the addition of the question; is there tension between the UCDS and other team

2
 For the purpose of this thesis the term Agilest refers to a practitioner of Agile methods.

 46

members? This question proved valuable in that it provided some social context between

team members. P5 was one of the very early interviewees and as a result that question

was used in all of the following interviews.

An audio recording of each interview was made and each recording was

transcribed verbatim to be used in the coding procedures. In order to speed the

transcription process up considerably, Express Scribe was used. Express scribe is a

transcription tool that allows the user to hotkey various features such as rewind, fast

forward, play, or stop etc.

Figure 5: A screenshot of Express Scribe transcription tool

Once the interviews had been conducted with the participants and transcribed, the

next step was to code the transcripts. The coding procedure had three phases, open coding,

 47

axial coding, and selective coding. These coding procedures are further discussed in

sections 3.2.3, 3.2.4, and 3.2.5.

3.2.2 Participants

The following section discusses the participants interviewed for this study. For the

purpose of this thesis the participants will be referred to as P1 (participant 1) … P15

(participant 15) and will be referred to as PN in an inline sentence and [PN] as a

reference.

Originally there were fifteen participants interviewed for this study. Each of the

participants was from a different team and company with the exception of two of the

participants. P3 and P6 worked for the same company but on different teams and in

different countries. P12 and P14 were removed from the study for different reasons.

P14‟s interview .wav file was corrupted and the data lost and P12 did not meet the

criteria of working in an agile methods team that was required for this study.

 The 13 included participants, from which the data was analyzed, had varied

backgrounds and various roles on their teams. Participants were from Canada, the United

States and Europe. The companies they worked for varied in size from smaller software

consulting firms to very large multinational computer software firms.

P1 was a UI designer on with ~ 8 years of experience practicing UCD with no

formal development training. P1 worked with a medium sized multinational company.

P2 was a developer and UI designer with ~15 years of experience. P2 worked

with a large multinational company.

 48

P3 was a developer with ~ 13 years of experience. P3 did not have formal UCD

training, however, claimed to be a self-taught usability practitioner. P3 worked for a

medium sized multinational company.

P4 was a developer with a formal HCI background acting as an information

architect with ~ 15 years of experience. P4 worked for a large multinational company.

P5 was a Human Factors Engineer and a UI designer practicing UCD with ~7

years experience with no development training. P5 worked for a medium size

multinational company.

P6 was a business analyst with ~5 years of experience. P6 did not have formal

UCD training, however, started his/her career in a usability lab for a large multinational

company. P6 worked for a medium sized multinational company. As mentioned above P6

worked for the same company as P3 but in different country.

P7 was a Human Factors Engineer with a development background, practicing

UCD with ~11 years of experience. P7 worked for a large multinational company.

P8 was a developer with ~21 years experience. P8 did not have formal UCD

training but claimed to be self-taught. P8 worked for a small consulting company located

in a single country.

P9 was a Human Factors and Engineer with ~8 years of experience. P9 worked

for a large multinational company.

P10 was a developer with formal UCD training with ~4 years experience. He

worked for a medium multinational company.

P11 was a developer, UI engineer with UCD practices, and an information

architect with ~19 years of experience. P11 worked for a large multinational company.

 49

P12 was a developer/ architect and scrum master with ~11 years of experience.

P12 was working for 2 different consulting companies.

P13 was a UCD and information architect. It is important to note that only a

portion of P13‟s data was transcribed due to portions being inaudible for transcription.

For the purpose of this thesis the term medium sized multinational company refers to a

company with more than 100 employees and less than 1000 with locations in more than

one country, a large multinational company refers to a company with more than 1000

employees with locations in more than one country.

 Table 1 below summarizes participant‟s role, experience level, and company size.

Table 1: Participant's role, experience and company size.

Participant Role(s) Experience ~Company Size

P1 UI Designer/UCDS ~8 years medium

P2 Developer/UCDS ~15 years large

P3 Developer/UI Designer ~13 years medium

P4 Developer/UCDS/Information

Architect

~15 years large

P5 UI designer/UCDS ~7 years medium

P6 Business Analyst/UCDS ~5 years medium

P7 Human Factors Engineer/UCDS ~11 years large

P8 Developer/UI Designer ~21 years small

P9 Human Factors Engineer/UCDS ~8 years large

P10 Developer/UI Designer/UCDS ~4 years medium

P11 Developer/UI Engineer/UCDS ~19 years large

P12 Developer/Architect ~11 years n/a

P13 UCD/Information Architect ~7 years large

3.2.3 Open Coding

Our analysis involved various coding activities. We first performed open coding.

Straus and Corbin define this activity as “the analytic process through which concepts

are identified and their properties and dimensions are discovered in data” [Error!

 50

Reference source not found.]. This coding is “fluid and dynamic” and consists of

attaching specific code words, developed during the open coding process, to discrete

incidents in portions of the data. This is done on the first pass through the transcription

that represents raw data. The goal of open coding is to identify ideas and or concepts in

the data and attach a code. It is here that the mass of data begins the first segment of the

data organization process.

In order to facilitate open coding on the data, HyperRESEARCH was used.

HyperRESEARCH is a “code and retrieve data analysis program”. It allows the

researcher to tag codes directly onto the transcription for later analysis. In the case that

new codes were generated by a later transcription, they were entered into the

HyperResearch application and appeared in the center panel. The application‟s center

panel, shown in figure 7, displayed the codes from all the transcriptions and therefore

could be applied on a first or subsequent passes through of the data. Adding new codes to

previously coded transcriptions typically happened in the next phase of analysis, Axial

coding. If a new code was added to the code list in the HyperResearch application and

that code also fit the existing coded tex, it was added to that text by the researcher.

 51

Figure 6: A view of HyperRESEARCH coding screen. The blue areas (from left to right) represent

the order in which codes are applied to a transcription, the overall code list, and finally where the

code is applied to which specific text in the transaction
3

In total, 126 codes were created during the open coding process. These codes are

listed in Appendix B.

3.2.4 Axial Coding

The next stage of analysis is axial coding. Trauth defines axial coding as [Error!

Reference source not found., pp 115]:

“The stage where categories and relationships between categories are supposed

to emerge. It is also the stage that the open codes are grouped into categories and

3
 HyperRESEARCH can be found at http://www.researchware.com/hr/index.html

 52

subcategories, and indeed some open codes become categories in their own

right.”

Axial coding assembles the previously attached codes from the open coding stage

into core relationships to each other [Error! Reference source not found.]. This is

achieved through constant analysis and comparison in terms of the participant‟s

interviews. These relationships, or categories, then act as a guide to precipitate adding

newer codes to the previously coded transcripts if applicable. For example while making

a second pass through, a newer code may be added to that transcript if it is applicable.

After iterating through the attached open codes and comparing their similarity and

frequency of their use, the following categories emerged:

 Upfront predevelopment stage. – resource allocation(s)

 Roles – who is doing what

 Compromises – who gives up what

 Passing Design Around – when the design (UCD and development) changes

hands

 Tools Used

 Team Dynamics

 Customer/Developer/UCDS/Team/Communication

 Testing

 Existing and Evolving Methodology/Practices

 Requirements Process

 Project/Methodology Results

 53

 Miscellaneous

For example, the Roles category was derived from the codes that pointed back to

discussion in the transcripts relating to roles in the development process. These codes

from one category are shown in Table 2.

Table 2: Open codes that have been assigned to the Roles category during Axial coding

CATEGORY CODES

Role – who is doing what Customer voicing requirements

Dependence work – dependencies or non-

dependencies in a team environment

End user – their role/ description

Customer role

Role as a generalist

Gorilla tactic – this is the user‟s

explanation of their practice process

Hard core developers – roles or a culture in

the team?

Working independenly of the team

Roles

We are this as a team

Who works on what –roles

Work experience

The full table of Open codes that are applied to these categories can be found in

Appendix C.

 54

3.2.5 Selective Coding

The final coding process in the grounded theory approach is selective coding.

Corbin and Strauss define selective coding as “the process of integrating and refining the

theory” [Error! Reference source not found., pp 247].

In this stage, the core categories are used to derive a small set of the high-level

concepts that form the big picture, questions, and or themes that emerge from the data

[Error! Reference source not found.].

From twelve initial categories, two higher-level categories emerged. These

categories emerged as a result of further abstracting the original 12 categories into more

general categories that showed common characteristics in order to derive an overall

theme. These categories were Overall New Combined Agile/UCD Process, and Roles.

The 12 initial categories were assigned to one or both of the new categories with the

exception of the miscellaneous category. The miscellaneous category contained some

codes that could not be easily categorized into the new categories or they simply did not

fit those categories. For example one code from the miscellaneous category was

“Working on projects that weren‟t really agile”. This code did not fit into either of the

newer categories or offer any beneficial data to the study.

From these two new categories came the main theme derived from our grounded

theory approach: team roles were a driving force of the participant‟s new processes. In

other words, each of the participant‟s methodologies for agile UCD integration had two

parts, the process and the roles on the team driving that process. This was true in every

participant‟s approaches to Agile UCD integration.

 55

Table 3: The two high level categories and assignment of the existing categories to them.

NEW CATEGORY INITIAL CATEGORIES

Overall New Combined Agile/UCD

Process

 Upfront predevelopment stage. –

resource allocation(s)

 Compromises – who gives up what

 Tools Used

 Customer/Developer/UCDS/Team/

Communication

 Passing Design Around – when the

design (UCD and development)

changes hands

 Testing

 Existing and Evolving

Methodology/Practices

 Requirements Process

 Project/Methodology Results

Roles Customer/Developer/UCDS/Team/

Communication

 Passing Design Around – when the

design (UCD and development)

 changes hands

 Team Dynamics

 Roles – who is doing what

 56

This prompted the development of the Agile/UCD General Process model

(AGPM). This model discusses the processes used to integrate these two methodologies

discussed in detail in Section 4.0.

3.3 Study Validity

In order to ensure the validity of the study, a number of steps were taken. One

issue with this type of research is to ensure that the data was correctly gathered. To

ensure this, two steps were taken. First, all the data/interviews were recorded as .wav files

for later playback and transcription. This ensured nothing was missed during the

interview. Second, the transcriptions and recordings were carefully compared at the time

of transcription. As stated above, a majority of the interviews were performed over the

phone or using Skype. There were instances where small portions of the interviews were

inaudible due to technical difficulties such as static on the line, background noise, or low

volume levels. In these cases, this section(s) of the interview was given a „[na]‟ tag and

that data was not used.

 Another issue to be considered is the sample size. Although the sample size was

small the participants all worked on different teams. Six of the participants worked for

medium-to-large multinational companies that had multiple teams around the world using

their development and UCD integration techniques [P2, P3, P4, P5, P11, and P12]. It is

also important to note that the sample size was not relevant to the qualitative approach as

we were not striving for statistical validity.

 57

3.4 Chapter Summary

In this chapter, the research method used to collect and analyze the data was

discussed. First, qualitative research was discussed from a high level perspective. Next,

why qualitative research was a fit for this study was also discussed. The chapter then took

a more detailed look at the research approach used, grounded theory. This included the

three coding techniques; open, axial, and selective coding. Following this, an overview of

the interview structure was given in order to understand the initial data gathering process.

Next, the participants in the study were described in terms of their roles with their

respective companies, their experience levels, and the size of the companies they worked

for. Finally, the validity of the research approach was discussed.

Throughout the chapter, some of the raw data was introduced without a detailed

discussion about that data. A detailed discussion of that data is presented in Section 4.0.

 58

4.0 Findings: Compromising Methodologies

 During the course of this research, a number of findings were discovered in terms

of how agile and user centered design methodologies actually accomplish coexistence in

a software development environment. I developed a general integration process model for

integrating these two methodologies with three different refinements to that model.

This chapter presents these findings in the following manner: First, the Agile-

UCD General Process model is presented followed by the three refinements of that model.

Next, we discuss the compromises that needed to be implemented by both methodologies.

Finally, some of the challenges are presented of when user-centered design is brought

into an agile development process.

4.1 The Agile-UCD General Process Model

 The participants had similar approaches when integrating agile methods and

UCD. We call this approach the Agile-UCD General Process Model (AUGPM). The

AUGPM is a representation of the participants approach to integrating agile methods and

UCD from a very high level perspective. In this model, we show the common practices

that all the participants followed. The AUGPM consists of two main process sections, the

Initial Stage, and the Iterative stage. It is in these two stages UI design is conceived and

implemented by people in different roles on their teams. The AUGPM has two main

aspects that were derived as a result of the grounded theory approach presented in 3.2.

These aspects were the process and the team roles driving that process. We then discuss

 59

the more specific process refinements used by the different team roles used to solve this

problem, all of which were based on the AUGPM.

 The study showed that the participants processes all had an upfront stage for UI

design that occurred before any software development began on the UI. For the purpose

of this thesis, we will call this the “Initial Stage”. This is not to say that during the Initial

Stage no other development on the project had begun at all. For example, P8 stated that

while the UI was being designed, the developers were working on “some of the technical

things, the back end, the database or some of the technical infrastructure” and not

“really focusing on flushing out the high value [UI] features”. P9 claimed that projects

that she had been brought into from the beginning did have some of the backend design

and implementation done previous to her arrival. One participant stated that development

had started on the design before the UCDS had started their design but it was an isolated

case and not the norm in terms of their development process.

 “Unfortunately there were other times when the developers started the

development but we didn‟t know that the design work had to be done yet. So it

was really miscommunication higher up [referring to the business owners] [P4].

In the Initial Stage, which typically lasted 2 weeks, we found two main activities,

contextual inquiry and low fidelity prototyping/testing. The contextual inquiry preceded

the low fidelity/testing activity. One participant described these two activities as the

“discovery stage followed by a prototyping stage” [P1]. These two activities take place in

Iteration 0 in Fig 7. In each of the participant‟s processes, the initial stage had “some

measure of user research” [P3]. A User-Centered Design Specialist (UCDS) or a team

member acting as a UCDS carried this out. The UCDS performed contextual inquiry to

 60

better understand who the users were and what were their needs in terms of the tasks they

needed to perform.

Figure 7: A UCD Agile methods project development life cycle common to the participants. The grey

area (Initial stage) represents the upfront UI design stage that happens once in the development

lifecycle of a project. The area in white represents the Iterative stage which continues for the rest of

the development lifecycle.

 The contextual inquiry was followed by low fidelity prototyping activities that

varied slightly depending on the team. This low fidelity prototyping consisted of

everything from producing hand drawn “sticky notes on the whiteboard” [P6] to “putting

together some wire frames to help flush out the requirements” [P4].

 The low fidelity prototypes were constructed in an iterative manner. During

each of these iterations, usability testing was performed using real users or team members

 61

acting as users. P3 remarked that their process for testing without real users, in order to

discover flaws in the design, was:

“For us this was looking at some general UI guidelines and following them. Kind

of a collaborative inspection process.” [P3]

 The purpose of the usability testing was to identify and correct any usability

issues before the initial UI design was handed off to the development team.

“And sometimes it was a very light weight way for us to do that [testing before

handing the design off]. We also tried some paper prototypes as well.” [P12]

 Some of the participants initially relied strictly on low fidelity prototyping in

their design/testing process

 “We will do path centered design. When we start HCI, we are focusing very

much on path analysis… we will do a very high level prototype, paper and pencil,

white boarding, no more than that.” [P7]

As a result, this shortened the upfront UCD design process and, hence, a smaller

set of features was derived for the first development iteration. One participant remarked

that their process had an Initial Stage that lasted two weeks [P8], while another stated

theirs had lasted only a few days [P3].

“So the idea that I found out is the quickest way to get up and running is, is to

create a set of personas start up with a well defined strategy phase [Initial Stage]

 62

which you know can be typically anything from a couple of days to a couple of

weeks” [P11].

However, the data analysis showed that for most participants the Initial Stage

lasted approximately two weeks. The output from the Initial Stage was complete and

initial UI design was complete which consisted of low fidelity prototypes and a list of

features or requirements.

 After the initial UI design is completed, it is passed to the development team

initiating the second stage of development, the Iterative Stage. This portion of the

development process is illustrated as Iteration 1 through Iteration … in Fig 4.1. Once the

development team has the initial UI design, a planning meeting is held to determine

which of the features will be implemented in the first iteration. The remaining features

are moved to the backlog for future iterations.

 The members that attended these planning meetings varied from team to team.

On the teams that were part of very large international companies, the planning meetings

had larger attendance. Attendees included the developers, UCDS, graphic designers,

information architects, the customer representatives as well as different levels of

executives and stakeholders

“We evolved it [the planning meeting process] a bit with certain groups that were

always involved in planning meetings. They were the developers, the business

analysts and quality assurance” [UCD members] [P12].

 63

 On the teams that were part of smaller organizations, often only a part of the

core team and the project manager or customer representative attended the planning

meeting. Participant P9 remarked that, on one of her projects the planning meetings were

attended only by the project manager, a senior developer, and herself.

Once it is established which features would go into the initial iteration, the

development team produces a technical design and development begins. While the

development team implements the features for Iteration 1, the UCDS continues with

more contextual inquiry, prototyping and UI testing to be used for the next iteration. In

other words the development team and the UCDS team work concurrently. The UCDS

team basically prepares for the planning meeting for the next iteration. Once the UI

features have been completed, the implemented UI design is passed back to the UCDS

for verification and usability testing.

 Verification consisted of determining if the development team had followed the

design rules set out by the UCDS [P1, P5]. Participant P5 claimed that the reason for the

verification step was “just to make sure the grid is respected” by the development team

[P1]. In other words, the rules and guidelines of the UI design put in place by the UCDS

were followed and not violated by the development team. P5 said that the verification

step was necessary because the “developers don‟t have a UI designer with them at all

times to keep them honest” in terms of the design intended by the UCDS.

Usability testing, which typically followed verification, may or may not include

user participation. One participant remarked that when users were not available for

testing, all the team members did a collaborative UI inspection in order to determine if

the user‟s tasks were possible to accomplish in an effective manner [P3]. Nine

 64

participants (P2, P3, P5, P6, P8, P9, P10, P11 and P12) said they used actual end-users to

verify and test implemented features.

 If the implemented features are correct and pass the usability tests, they are

marked as finished features and await release to the customer. The time period before

finished features were released to the customer varied from two days [P9] to three or four

weeks [P3].

 On the other hand, if a feature failed verification or usability-testing, the UCDS

redesigned the UI features and passed them back to the development team for re-

implementation in the same iteration. If an issue was uncovered that was too large to be

fixed in that iteration “then it would have to go into another iteration” [P9]. Once the

iteration is finished, the UI design that was developed concurrently by the UCDS is

passed to the development team and the process begins all over again (as shown in

Iterations 2 and 3 in Fig 7. This process continues iteratively for the duration of the

projects lifecycle.

4.1.1 Tandem Development

The above commonalities that are present in the integration of UCD and agile

methods could not exist without the developers and UCDS personnel working together in

tandem, as illustrated in Figure 7.

As mentioned in Section 4.1, the UCD initial set of features was smaller than that

in a traditional UCD process. This meant that design was done incrementally in terms of

the multiple smaller sets of features being designed over multiple iterations by the UCDS

 65

and hence being implemented in different iterations by the development team. In doing so,

this compromise generated a tandem development approach. Both teams were working

on the same iterations but at different times.

In other words, the UCD group member(s) would be designing the UI one or two

iterations before the developers started implementation on those iterations. P5 stated they

were always working ahead of the development team to produce a design for the

developers to follow. P9 stated that

“Basically I would work with the product [the UI design] 2 iterations ahead of

development” [P9].

The UCD group member would also be testing the design after the development

team had implemented the design for correctness as well as to ensure no usability issues

existed. If an issue was found, it was passed back to development.

 “They would clean up whatever testing found within the iteration” [P9].

This means that regular interaction is required between these two member groups

throughout all the iterations. Although they were both working on the same product, it

was on different portions of the product at different times. We call this Tandem

development.

Figure 7 closely resembles Figure 4, Sy‟s process diagram. Both show the initial

upfront stage of UI design as well as the iterative parallel UCD design and developer

working on a tandem timeline. This means that our work reaffirms previously existing

work published by Sy and shows that Sy‟s approach is not limited to only her company.

 66

The general approach describes similarities of the approach taken by development

teams and the UCD specialists in this study. These similarities represent the interaction

between the two during the integration of UCD into agile methods. However, as

mentioned above, we also found differences in participant‟s approaches. Three slightly

different approaches for integrating UCD into Agile methods emerged. The differences

lie in who executes certain aspects of the process, i.e. who performs which roles in the

process. The following sections discuss the approaches used by different teams and the

roles of group members that facilitated those approaches.

4.2 AUGPM REFINEMENT 1: THE SPECIALIST

We call this first refinement the Specialist. It consists of three main member

groups
4
: the users/customers

5
, the UCDS, and the development team. Four of the

participants, P1, P5, P9 and P10, practiced a form of the Specialist approach. These four

participants were on teams with a single UCDS and multiple development team members.

In the Initial Stage of the Specialist approach, the contextual inquiry and the low

fidelity prototyping steps are both conducted by the UCDS “interfacing with the

4
 For the purpose of this thesis the term “main member group” will be defined as the individual team member(s) that

work directly on the software application on a regular basis. An example of a main member(s) would be the developers

building the software application. An example of a non member in a group would be a stakeholder that might only see

the product rarely. P4 remarked that the high level stakeholders, or upper level executives, only saw the product once a

year. They are not considered to be main group members.

5
 “Customers” refers to anyone that has a vested interest in the development of the project as a stakeholder or someone

representing a stakeholder. “Users” refers to people that are actual end-users of an application.

 67

customer” [P5] with an almost total absence of the development team. During this time

the UCDS is “learning the basic requirements for the customer” [P1] through contextual

inquiry. Once the UCDS has gathered contextual information from the user, the initial

low fidelity prototyping work begins. This step involves producing low-fidelity drawings

and/or wire frames of a UI‟s features and testing those with users to determine features

for implementation. Low fidelity prototyping tools ranged from pen and paper, sticky

notes, and white boards to applications like PowerPoint and Visio. Because the above

activities do not typically involve the developers, the UCDS initially acts as a “bridge

role between the developers and the customer” [P5]. They relay what the user‟s requests

and needs are to the development team.

So currently I am in the situation where I am going to the customer‟s site. I sit in

on their meetings. I understand how they work and I translate some technical

requirements and some flow of how the screens should be [P1].

 After iteratively prototyping the UI design, an initial high-level UI design is

created and the UCDS meets with the development team to ensure that the design is

technically possible. If the design is not technically possible, the necessary changes are

then made to the design by the UCDS under the direction of the development team. If the

initial design is technically possible, it is passed to the development team for

implementation and the initial stage is complete. P1, P5, and P10 stated that the Initial

Stage typically lasts two to four weeks depending on the project but the timeline was

typically two weeks. Whereas, P9 stated this typically lasted six weeks. P1, P9, and P10

 68

stated that once the Iterative Stage begins, the UCD iterations were shortened to two

weeks as opposed to up to six weeks in the Initial Stage.

While the development team implements the features for the iteration, the UCDS

conducts more contextual inquiry with the user or customer for the next iteration. P9

remarked that “sometimes I look ahead one or even two iterations to conduct contextual

inquiries”. This is consistent with Sy‟s approach used at Autodesk where the UCDS on

her team also looks 2 iterations ahead. Concurrently, usability testing occurs during this

time to augment, extend and refine the feature list for the next development iteration. P10

remarked that, in this way, the UCDS continues to work in parallel with the development

team.

Once the development team completes their technical design and implementation,

they pass it back to the UCDS. This varied in terms of when it was exactly passed. It

depended on the team and the project they were working on. The UCDS then takes that

implementation back to the customer or user to perform usability tests. This testing

differs from usability testing of low fidelity prototypes in that those tests were testing

future features, whereas the current tests evaluate completely implemented features. If the

implemented features are free of usability issues and they meet the user‟s approval, they

are marked as complete and the iterative stage starts again with a planning meeting to

determine the next set of features.

P7 was also a UCDS. However, he did follow the above approach with one

difference. P7 typically worked on iterative projects that were riddled with “red tape”

from the stakeholders. This required him to gather requirements in a longer iterative

 69

process typically 6 weeks long. He did however follow the Specialist refinement in that

he was the bridge between the developers, users, and customer.

4.3 Refinement 2: The Generalist

Next we discuss the Generalist refinement to the AUGPM. The Generalist

refinement uses only two main member groups or roles, the users/customers and the

developers acting also as UCD specialists. It is worth noting that the developers were not

formally trained UCDS. They were self-taught.

“I wasn‟t working in the lab, but I did get to know the head of the usability lab in

Toronto quite well. And he invited me in to watch some user design sessions in

action. Which is quite interesting and it peaked my interest. So I am not formally

trained at all in HCI but through reading and a big interest in it have gotten to be

very involved in that field” [P6].

The developers acting as UCDSs did have some informal or self-taught UCD

expertise. P3 and P8 both stated that their experience with UCD had come from a

weekend seminar pertaining to UCD or related reading they had done on their own. This

means that some of the developers [P8] or all developers [P3, P6] were responsible for

development as well as some or all of the UI design and used a UCD approach. Unlike

the Specialist approach, this approach had more than one team member acting as the

UCDS present on the team. The least number of team members acting as UCDS we

found on a team was two [P8]. The other teams had multiple acting UCDS with most of

the team members having some input into the UCD design and testing process. P3

 70

remarked that this was their “collaborative inspection process”. The UCD activities did

vary depending on the team. P8 practiced low fidelity prototyping and prototype testing

as well as usability testing after implementation. However, P8‟s contextual inquiry was

limited due to the short initial stage timeline of two weeks. P3 and P6 practiced

contextual inquiry, low fidelity prototyping and testing as well as usability testing. Three

of the participants, P3, P6, and P8 followed a form of this process.

When developers acted as UCDS, the Initial Stage lasted two to four weeks and

included contextual inquiry, prototyping and user testing [P3, P6, and P8]. On average, it

was shorter than in the Specialist approach.

The number of developers acting as UCDS varied from team to team. In the case

of P8, not all of his team participated in UI design and UCD activities. In this case, P8

was responsible for passing the UI design to the developers that were not participating in

the UCD process. In case of P3‟s and P6‟s team, all developers contributed to the UCD

activities. They may not have initially designed the UI but they were responsible for other

activities such as testing the UI. Once the developer has the contextual information that is

needed for the first iteration, low fidelity prototyping is started in an iterative fashion

either with the customer [P8] or with team members acting as customers to determine the

stories for the development iteration [P3, P6]. If customers were not available for

usability testing, each member of the team was expected to participate in testing and

heuristic evaluation of the UI portion they were building [P6]. This was very similar to

the verification performed in the Specialist approach.

Once the initial low fidelity prototypes are tested the UI design is finished. A

planning meeting is used to prioritize which features are going in to the next iteration and

 71

the work is split among the developers. This initial design is passed to the developers to

implement the features and the Iteration Stage begins.

On completion of an iteration

“we will then bring users back in and we will ask them to go through typical

usability testing model. Where you sit back and watch them use it“ [P6].

Because the developers take on the role of the UCDS, if a usability issue is

discovered, the developer can deal with it immediately without passing it off to another

team member. This also means that some developers implement features and are working

in parallel to others who design the UI [P8].

The main difference between the Generalist and the Specialist approach is the

roles that the developers need to practice. The data suggests that the working

environment in the Generalist‟s approach was much less formal than that of the

environment of the Specialists.

For instance, more than one UCDS that practiced the Specialist approach

mentioned a sort of separation from the development team members. P9 remarked that

the way the UCDS was accepted into a team environment depended on how they were

introduced to a team. She mentioned that if she was introduced as a UCDS then she had

to prove herself to the development and management team. Other UCD specialists [P1

and P5] mention that there was definitely a barrier of acceptance into the team. P5

referred to this barrier as the “us and them” perspective.

4.4 Refinement 3: The Facilitator

P2 and P4 followed a slight deviation to the Generalist and the Specialist, which

we call the Facilitator. Their teams had a group member that had both formal UCD

 72

training at the university level, and extensive software development and UCD experience.

However, it is important to mention here that both P2 and P4 worked for very large

multi-national companies, and both have extensive experience in their fields. The size of

the company is important because of the politics that needed to be mitigated between the

numerous customer groups and stakeholders. P4 remarked that their company dealt with

very large enterprise projects and that there was going to be politics in projects of that

size. P4 was there to aid in sorting out differences between different customers and to

determine the UI features that would be designed and implemented in the next iteration.

Although, P2 and P4 both had UCD and development expertise and were contributing

their input into projects for which they were not directly designing the UI or developing.

For this facilitation process, the team was not present and P4 acted as a bridge for

delivering information back to the developers and UCDS. It may be the case that the size

of the company dictated the Facilitator to be used between the UCD, developer, and

customer groups.

 This team member was both a Specialist and a Generalist. He was a Generalist

in terms of having technical development skills as well as UCD skills. He also was a

UCD specialist capable of performing this role expertly. The main difference between the

Specialist and the General Specialist roles was the latter‟s team had more than one UCD

specialist, and these were managed by the Specialist Generalist person. In the Specialist

approach there was only one UCD person on the team with no development skills. Thus,

for the purposes of this thesis we will call the team member with both formal UCD

training and software development experiences a facilitator team member.

 73

This approach was very similar to the Specialist and Generalist approaches in that

it followed the same practices mentioned in the Initial Stage and the Iterative Stages. The

main difference of this approach was in group membership roles. Both P2 and P4, at

some points in the development cycle, acted as a liaison among all the different team

members including the developers, the UCD team, and customers. For example, P2 stated

that the UCD personnel on his team were “more or less divorced” from what the

development team was developing. This meant that he was the only bridge between these

two groups of team members. In other words, P2 was working with the UCD specialists

to flush out the high level requirements. At almost the same time, P2 was also working

with the development team at which point he acted as a bridge between the two groups by

relating UI designs to development and implemented features back to UCD.

The main difference that this approach had was that the facilitator was not

actually acting as the developer or the UCD specialist directly but mitigated between the

two groups that never directly communicated.

4.5 Compromise: A Solution For Integrating The Methodologies

 As discussed earlier in Chapter 2, agile methods and UCD have two very different

approaches to developing software from an upfront resource allocation perspective. UCD

tends to lean towards resource-heavy upfront research and testing prior to the code being

written [Error! Reference source not found., Error! Reference source not found.,

Error! Reference source not found., Error! Reference source not found.]. Agile

methods, on the other hand, champions minimizing upfront resource allocation in favor

of more quickly getting working software into the hands of the customer [1, Error!

Reference source not found.]. This spawns one of the key research questions driving

 74

this research and thesis: “How are these two methodologies being combined in industry

given that they have very different upfront resource allocation techniques”? It is clear that

these two methodologies cannot coexist in the same development project without some

form of compromise.

The agile practitioners needed to allocate upfront development resources for UCD

and the UCD practitioners needed to scale back on the resources they typically required

for upfront design. What was and was not compromised by both methodologies are key

factors in the make up of the General Process Model and its three refinements.

4.6 Agile Compromises

Both methodologies needed to compromise in order to be combined. Agile

practitioners needed to relax the notion of getting working software into the customer‟s

hands as quickly as possible [Error! Reference source not found.]. To do this they

needed to accept that a portion of resources needed to be allocated for UCD practices in

the upfront UI design. This meant that the time box for the predevelopment of the initial

iteration (the iteration referred to as iteration 0) needed to be added to include resources

for UCD practices. In other words, the Initial Stage had “some measure of user research”

[P3] resources added to it. However, the Initial Stage was used to gather just enough

information to get the project up and running. For example, P12 remarked that his team

had an overall vision of the project but there was “not much user research done upfront”.

P12‟s team were just doing enough [upfront research] to get by” to get the project started.

For some of the design teams, this Initial Stage had some flexibility.

 75

“So typically when we start a project we go through what [company name] calls a

quick start. It‟s essentially like a project kick off, which can range anywhere from

2 weeks to a month long of intensive sessions with different users. Bringing them

in and doing high-level requirements gathering. [P6].

For others the Initial Stage timeline was a definite timeline. P12 also remarked

that the time for their “initial phase” was averaging 2 weeks or under but not longer than

2 weeks.

P4 claimed their UCD team initially did a very general six month plan of the

larger features set they wanted to deliver over that six month time period. They then

selected and scaled the initial features set size back to fit the two week iteration time

frame for the initial development design. This indicated that this team initially took a

high level design and split it into more detailed smaller sets of features to fit the

development iterations.

“So we sort of do a six month version right up front and then we have to scale it

back and at the end of the initial iteration. We deliver the two week version” [P4].

Another participant recalled that they had a week of research and a week where

the company they were working for supplied research material for them to draw from for

design. These two weeks were predevelopment weeks and when asked if there was any

UI development involved during these two weeks the participant replied “not at all”

 76

[P11]. This participant‟s Initial Stage lasted no longer than 2 weeks mainly because of

budgetary constraints.

These are companies that are sort of on a shoe string budget and so they gather

the user information. [P11].

The typical up front resource allocation was 2 weeks. However, the time

allocated for up front UCD work varied slightly for some of the participant‟s teams. One

participant remarked that their Initial Stage lasted two weeks [P8], while another stated

theirs had lasted only a few days [P3].

“So, the idea that I found is the quickest way to get up and running is, is to create

a set of personas. Start up with a well defined strategy phase which can be

typically anything from a couple of days to a couple of weeks” [P11].

The longest reported time for upfront predevelopment resource allocation was six

weeks.

“I had one and a half months time to acquire knowledge about users and build up

the personas” [P10].

However, the data analysis showed that, for most participants, the Initial Stage on

average lasted two weeks. Participants P2, P4, P5, P8, P10, P11, and P12 all stated that,

typically, the Initial Stage was approximately 2 weeks whereas P3, P6 and P8 typically

spent less than two weeks, P7 always spent more than 2 weeks, P9 spent six weeks, and

P1 and P13 did not provide a timeline for their Initial Stages.

It was unclear what was responsible for the small differences in timelines between

the different participants Initial Stages. However P3, P6, and P8 all shared the same

approach to Agile UCD integration, the Generalist approach (discussed in section4.6).

 77

Their shared approach may have been the reason for the shortened Initial Stage. P2, P4,

P5, P8, P10, P11, and P12 all shared either the Specialist refinement or the Facilitator

refinement and having a UCDS involved in their process may have been the reason for

similar Initial Stage resource allocation.

4.6.1 What Was Not Compromised

Although Agile methods practitioners needed to extend the initial up front

resource allocation to allow for UCD practice integration, only a short period of time was

allocated in all cases compared to what typical UCD practices preferred. This meant that

agile teams were willing to allocate some resources but not nearly the amount that UCD

practices would normally require for a full upfront UCD study.

P10 claimed that he would have liked more time to complete more detailed

upfront UCD research.

In all the cases the UCD folks had a limited timeframe to do their initial UCD

study and design. As mentioned in the previous sections, there were groups that had some

flexibility to carry out more detailed UCD studies

“Every once in a while we have the, you know, the ability to do the stuff [usability

research] ourselves but It‟s not it‟s not a common case in all situations” [P11].

4.6.2 When Agile is Integrated Into a Project

In all cases, agile methods was the software development methodology used by

the participants in this study. Therefore, agile methods were present at the beginning and

throughout the development lifecycle of each of the development projects that the

 78

participants worked on. This was, in part by, design as the goal of the study was to see

how practitioners integrate both approaches. We didn‟t find a team that was using UCD

and then integrated agile approaches into their development process. This may be an

artifact of the industry network of our group (which is better connected to the agile

community than the UCD community).

4.7 UCD Compromises

UCD practitioners needed to compromise the notion of acquiring as much

contextual information, design, and usability testing before any development could begin

on the UI. The initial iteration was considerably shorter than that of a typical UCD driven

project. This meant less time for contextual inquiry, UI design, and testing. It was

inevitable that only a limited number of features could be designed in detail in the Initial

Stage of development. This meant that UCD practitioners needed to give up a portion of

the typical upfront resources. This was opposite to the agile methods compromise which

required that methodology to add upfront resources.

For instance, the participants remarked that the upfront work of researching users

and contextual design tended to be between two and six weeks which is much shorter

than traditional UCD upfront resource usage [Error! Reference source not found.,

Error! Reference source not found.].

The amount of initial upfront design resource allocation for UCD was reduced in

favor of developing the UI incrementally. This also reaffirms Sy‟s previously published

model [Error! Reference source not found.] discussed in the related work section.

“We had incremental usability studies, incremental development, incremental

testing. Basically doing everything within an iteration” [P12].

 79

The iterative nature of the UCD design followed the agile methodology of

iterations, and the output of the iteration typically was working code as well as

incremental UI designs.

“Every 2 weeks there would be an iteration planning meeting where people would

decide the work for the next couple of weeks [for the designers]. I didn‟t have any

big picture design input, the kind of design input was something they [the

developers] could fix in an iteration” [P9].

4.7.1 What Was Not Compromised

 Although the upfront resource allocation was cut dramatically for the initial

iteration, the overall UCD process was not sacrificed. Only a fraction of the features

could be designed and tested for usability in the time available for the initial iteration.

This meant that UCD practices were applied to the features at different times in terms of

iterations. The same UCD process used for the first iteration was also used in subsequent

iterations. This meant instead of applying a majority of the UCD resources to the first

iteration they were spread over subsequent iterations through out the projects.

“We have typical dev team members, we have business analyst. We also have a

graphic design, interaction designer. We have human factors. … UCD was with

the majority of the project “[P12].

 80

The UCDS would typically find some issues with features in the UI design as

testing was completed against the implemented features. Issues that required fixing may

not fit into a single iteration and hence the UCDS would assign them to future iterations.

“I had issues I had found. So the testing basically helped me figure out, here‟s the

things we need to fix first and then I would work with the product manager to

make sure those things were in future iterations” [P9].

Although the UCD upfront resources were cut in favor of iterative UCD design,

all the features still were based on contextual inquiry, design, and had usability testing

applied to them.

4.8 Timing of Integration

This section looks at the strategies for scheduling the UCD component into an

agile software development project. The section discusses the strategies used and some of

the problems and solutions that relate to integrating UCD into the agile development

process from a timeline perspective.

4.8.1 When UCD is Integrated Into an Agile Project

The Related Studies, section 2.5, discusses different perspectives of bringing in

UCD practitioners and practices into software projects. In that work, not much detail has

been provided in terms of when agile methods integrate the UCD process into the overall

development process. Although the papers in the related work section generally discuss if

 81

the projects are new or existing, not much detail is provided about the different strategies

used in terms of when UCD practitioners were added to projects.

During our research, we discovered that participants used two strategies for

engaging UCD personnel in an agile team. For the purpose of this thesis, these two

strategies will be referred to as the Niche strategy and the End-to-End strategy. The

following sections discus these two strategies in detail.

4.8.1.1 The Niche Strategy

The first strategy that we observed for incorporating a UCD process into an agile

project was the Niche strategy. For the purpose of this thesis, the definition of the Niche

strategy is as follows; a strategy for including a UCDS or UCD process into a discrete

segment of a software project after that project has already begun. This strategy does not

include the UCDS or the UCD process throughout the entire project lifecycle. This

occurs after the project has been underway for some time and existing production UI

code has previously been written for that project. It is important to note that none of our

participants were using the Niche strategy, although they had been exposed to it in the

past and is therefore worth noting for comparison purposes.

This strategy is typically employed to deal with specific problematic usability

areas of the UI software. This may be also employed when a project team member in a

position of authority employs a UCD person in an attempt to improve their software

development process as a whole.

 “You are a trouble shooter. The guidance I‟d been given by management was to

focus on low hanging fruit in a sense. Fix what‟s easy to fix. I joined the team and

 82

the development team was already starting a release cycle. So within a month I

had a whole snag list of all the issues that could be fixed” [P9].

One participant stated that projects that have no usability member on the team

would eventually experience some sort of usability defect with their product after

shipping. Eventually, that product may come back to the development team to have the

specific problem(s) corrected. At this time, the UCDS may be employed in a Niche

strategy to correct that particular defect or defects.

“Prior to product releases if you don‟t engage someone with interaction design

skills and the product goes out, it‟s with issues. Usability issues that have to be

addressed after the product has gone out to market” [P5].

At this time, the UCDS may be employed in a Niche strategy to correct that

particular defect(s). They are brought in to address usability needs.

“So from the standpoint of understanding how the people really use the product

there is nobody in the team that really represents that. Certainly development

doesn‟t. The developers feel themselves capable of designing the UI. You can

usually tell that this was designed by developers without the guidance of people

like myself.” [P5]

The Niche strategy is not aimed at correcting all the problems that may arise but to focus

on more strategic usability problems.

 83

“There is a lot of interaction design, UI design people, who work specifically on

strategic stuff. So this application has this usability problem here that you have to

work on. That‟s strategic in a sense that is very tactical and not certainly an end-

to-end type of project” [P5].

One problem with this type of strategy is that often there may be more than the

obvious defects that need to be corrected. P9 commented that when management brought

her in to fix a specific problem, she found that there was a much larger list of usability

issues to be corrected;

“When you are brought in just to solve one thing, you usually see four hundred

others things that ought to be fixed” [P9].

For this particular project, the project manager (PM) was supportive and many of

the issues were able to be resolved. The participant‟s reasoning for this was that there was

an educational curve brought forth by her in order to demonstrate to the PM the need for

these changes by including the PM in the usability testing process. However, the same

participant also argued that if the PM on a project is not supportive of having the UCDS

on the team, the opposite results may occur.

For instance, on one project business owners decided to employ a UCDS

“because they thought it would be a good idea to see how UCD would work in an

existing product”. On that project “it was project management that was the prime source

of resistance” towards the UCDS. Resistance from project management included “not

 84

listening, not willing to change any part of the plan in respect to what needed to be done

to correct defects” [P9].

“They were not willing to do contextual inquiries. They were not willing to put in

any testing. They were not open to any process of UCD” [P9].

Another issue raised, in regards to the Niche strategy, was that employing UCD

practices gives some team members the impression that the UCD process slows the

development process down. The participants remarked that when a UCDS is brought into

the development process and design issues are discovered, parts of the development

process needed to stop. The claim was that this causes resistance from the development

team members [P1, P5, P9]. In fact, one participant claimed it set up an “us and them”

type of mentality with some developers.

“You do get Agilists who have worked successfully with usability people or design

people. But frequently you get this sort of „we know what we are doing. You get

these usability people coming in and they slow us right down‟” [P5].

Another participant claimed that, because he had been brought in to the project in

the middle, he felt he had to defend his “opinions pretty strongly” to have the team

accept his design recommendations [P10]. These problems were among the reasons for

participants favoring the second strategy discussed in the next section.

One solution offered by a number of UCDS was that other team members may

need to be better educated in terms of UCD and the value of a UCD personnel on their

team [P1, P5, P8, P9, and P10]. This was in keeping with the finding presented by

Gulliksen et al. in the related work section. Gulliksen et al. see education as a key factor

 85

in the successful integration of a UCD process into the development process [Error!

Reference source not found.].

 One participant remarked that, in one project, the project managers were co-

located and as a result they started to hear reports about UCDS team members on other

teams. The managers of those teams realized that “it‟s pretty handy to have this person

around. You know she solves UCD stuff before it‟s actually seen” [P9]. Thus, the value of

a UCD person on the project became clear through watching and learning.

 P9 also remarked that developers were rarely a source of resistance, which

differed from what the previous participant stated about the project managers. What was

clear was that there was resistance from more than one group. However, she claimed that

there was still an instance of learning in that “very quickly developers start to see, oh my

God, this person makes my job easier” [P9].

P1 claimed that once she had spent enough time designing a team‟s UI product,

“then you have a chance for them to appreciate what you are building”.

This learning process is not limited to team members. Participants also stated that

customer representatives thought that integrating UCD practices into the development

process was a positive addition after witnessing the process first hand. The customer

learning curve was reflected in our study data [P3, P6, and P8]. According to P6

customers/stakeholders from one project saw positive value in applying UCD in their

projects. They also requested the use of some of the UCD practices prior to that being

suggested by the team for the next iteration [P8]. This indicated that witnessing the value

of UCD first hand added to their learning process. According to Gulliksen‟s findings “all

parties involved in the development of interactive technology, e.g. stakeholders,

 86

managers, users, etc. need to acquire a minimum level of awareness about HCI and

usability” [Error! Reference source not found., pp 207-215]. In order to acquire this

minimum level of awareness, it makes sense that education is key. This also supports

Rosenbaum‟s notion that educating team members is a substantial portion of what is key

to successful UCD integration into a software development process [Error! Reference

source not found.].

This is consistent with the suggestions provided by the participants in this study.

Although our findings suggest that education may be an integral part towards better

understanding of the value of UCDS in Agile software development, it is not limited only

to the Niche strategy.

4.8.1.2 The End to End Strategy

Another UCD integration strategy found in our research was the “End-to-End”

strategy. For the purposes of this thesis the End-to-End strategy is defined as; the

employment of a UCDS, and or a UCD process, from the beginning of an agile software

development project and throughout the development lifecycle of that project.

This means that the UCDS, or an acting UCDS, is present in the development

process before the UI code is written and performs some form of upfront contextual

inquiries and/or UCD testing and prototyping. Once the code development process begins,

a UCDS or UCD process is present throughout the Iterative stages of the development

process.

This does not necessarily mean that the first UCDS on the project is the same

UCDS at the end of the project‟s development lifecycle. If projects span considerable

 87

time, there may be more than one UCDS involved in the process at different times. P10

stated that on previous projects that he had worked on, he was brought in from the

beginning of the project as a UCDS. However, the project he was working on now, there

was a UCDS involved from the beginning of the project but he was the third UCDS on

this project.

Other participants also said that they had not been the original UCDS on a project

but that the project had maintained a UCDS throughout the project‟s lifetime [P5, P9].

P2, P4, P11 and P12 all worked for large, multi-national IT companies that used

the End-to-End strategy on a regular basis. Because these companies projects were so

large and spread over longer periods of time, the members of the UCD team did change.

There was UCD representation throughout the project from beginning to end.

“If you are talking about the entire project it was not just collocated it was

spread over three different teams working in three different time zones, but the

UCD was with the majority of the project.” [P12]

 P6 also worked for a large multi-national company that was not as large as the

companies that employed P2, P4 and P12. However, the company‟s size was substantial,

spanning four continents. She commented that UCD “is becoming much more prominent

throughout the organization. So now all of our projects do incorporate it. They

incorporate it holistically from beginning to end” [P6].

 88

One drawback with the End-to-End approach is that although the process allows

for end to end testing, which is beneficial, it may be initially more costly than the Niche

strategy. The End-to-End strategy requires that a UCDS be present throughout the project

lifecycle, whereas the Niche strategy requires the UCDS to be present for a fraction of the

time. This means that the resources required for the End-to-End strategy will be higher

than those required for the Niche strategy. This may explain why larger companies are

able to employ UCD practices in an End-to-End strategy. The cost of integrating UCD

practices can be substantial. On average, UCD constitutes 19% of software development

budgets [Error! Reference source not found.]. Perhaps for some smaller organizations

these costs may be prohibitive in terms of End-to-End integration. On the other hand, the

Niche strategy does provide at least some UCD benefits for companies or projects with

fewer resources.

 As mentioned above, P2 and P4 both worked with very large companies. Both of

these companies employed End-to-End strategies on the projects P2 and P4 had worked

on. They were both satisfied that the methods being used were successful. P4 remarked

that his company had a large resource pool of research for what practices had worked in

the past and that the teams he worked on relied on this information during their projects.

P5 stated that she had worked on both Niche and End-to-End strategies but that

she preferred working on a large-scale project from the beginning to the end. Her reason

for this preference was that “you have to have something that is successful for the

moment as well as for future.” She also stated that in a Niche approach it is very tactical

and the UCDS does not see the end result of the project.

 89

P9 also favored the End-to-End strategy in that she found it less frustrating in

terms of limited time and resources. This participant commented that it is very frustrating

when you are employed to fix a specific problem and you see that there are many other

problems that require fixing but you are not allowed to do anything about them. P3 and

P6 were also very much in favor of the End-to-End approach. As mentioned above, their

company was very much behind UCD practices and that they were employing them

“from start to finish of their projects”.

4.9 Chapter Summary

 This chapter presented the findings of our study. First, the section introduced the

General Process Model which is a high level overview of how agile and UCD

methodologies are being integrated. Next, it briefly discussed the tandem like

development process that allowed integration of both methodologies. This was followed

by the three refinements to the AUGPM, The Specialist, The Generalist and the

Facilitator refinements. The chapter then discussed the compromises that both Agile and

UCD processes needed to make in order to coexist on the same project. Finally, two

strategies were introduced in terms of integrating a UCDS or into an agile project. These

were the Niche strategy and the End-to-End strategy.

 90

5.0 Conclusion

The following chapter provides a conclusion for our study. It contains a brief

discussion of our findings and revisits the existing work in order to establish that our

findings have commonalities with previous work that can be compared against numerous

software projects and teams. Next, this chapter discusses some of the limitations of the

study and provides suggestions for possible ways to strengthen future studies. Finally, the

section concludes with a discussion of possible future work.

5.1 Discussion

Our study set out to investigate how agile methods are currently being integrated

with UCD practices and in turn reconfirm (or refute) existing work in this area of study.

We first started by examining related work. We found that, although these studies

provided valuable insight for our work, a broader empirical basis is needed to make more

general conclusions in terms of the integration of these methodologies.

With the exception of Ferreira‟s work, the previous studies that pertained directly

to Agile and UCD integration centered on one team or one company. There was no strong

evidence that these approaches were general enough for use in different companies or on

multiple teams. Ferreira‟s study [Error! Reference source not found.], on the other

hand, did span 4 projects and 4 different teams. The process descriptions in that study

were not detailed in terms of the steps in their processes. Our study examined both the

steps in the process and the process over 13 different teams in 12 different companies to

find commonalities shared for integrating agile methods with UCD presented in Section

4.0. All our participant‟s teams followed similar processes to that of Sy‟s. This confirmed

 91

the model originally presented by Sy [Error! Reference source not found.] and

suggests that this integration approach is not only being used but could be more widely

applicable to other teams and projects. This was outlined in the AUGPM in Section 4.1.

In fact, three of the participants were employed at multinational companies that are using

this approach on multiple teams in different parts of the world [P2, P3, and P4].

The participants‟ teams, however, did have some differences in terms of team

roles and responsibilities. We also presented different refinements to the AUGPM

regarding who performed the UCD-oriented activities in a team in terms of their roles.

These refinements were: the Specialist, the Generalist, and the Facilitator, Sections 4.2,

4.3, and 4.4 respectively. These refinements present the answer to another research

question: what are the roles that interplay directly with the combination of these two

methodologies?

 We also found that these refinements were similar to approaches used in previous

work.

Sy‟s previously published work, Adapting Usability Investigations For Agile

User-Centered Design, was, by far, the most detailed paper in terms of UCD Agile

integration. It closely resembled our AUGPM, presented in Section 4.1, and more

specifically, the Specialist refinement presented in Section 4.2.

Sy‟s approach had UCDS members on their team that gathered the upfront data in

Iteration 0, much like in the Specialist refinement. Once Iteration 0 was completed, the

developers and UCDS worked in parallel during the cycles that followed [Error!

Reference source not found.] as described in our Tandem definition Section 4.1.1. This

approach closely matched the AUGPM and the Specialist refinement of our study in a

 92

number of ways. First, there was an Iteration Zero for conducting contextual inquiry and

prototyping by the UCDS in the same manner as the Specialist approach. Second,

Iteration Zero was completed before any implementation of the UI code took place.

Finally, Sy‟s process included team members that were specific to the UCDS role which

closely resembled our Specialist refinement.

The Generalist refinement, presented in Section 4.3, was similar to Patton‟s

process [7]. On his team, there was no formal UCDS. The development team was

expected to contribute to the UI design acting as the UCDSs. Therefore, the development

team was responsible for both UI design and the implementation of that design. Each

developer was expected to perform heuristic evaluations on any new feature that was

introduced into the UI much like a UCDS would during the course of their evaluation.

This was similar to the usability inspection activities described in Section 4.3. The team

members on Patton‟s team actually designed the features and their placement on the UI

similar to our Generalist refinement [Error! Reference source not found.].

In Ferreira‟s four case studies, the UI design and development process aspects

were not as detailed as the other related work; however the roles of the team members

were. Her cases, one, two and four, included one team member that was an actual UCDS.

This resembled the Specialist refinement in terms of having at least one UCDS on the

team. Her case three resembled the Generalist approach in that the team member acting

as the UCDS was also a developer who had an interest in using UCD methodologies in

the software development process. There was no clear indication that the UI designer was

formally trained in UCD practices. She only states that UCD UI design was their interest

[Error! Reference source not found.].

 93

All of the related work discussed above did resemble one of the three approaches

that we saw in our data. Moreover, the process refinements in our data as well as the

processes in related work are consistent and complete (in as much as no other process

models were described yet). The empirical data gathered by others and in the study

presented here indicates that the common approach outlined above can be – and is – used

by different companies as well as by different teams.

One more similarity is that all of the empirical work so far did mention a degree

of success when implementing agile methods together with UCD practices. We also

found that all but two of our participants suggested that by combining these two

methodologies there was value added to their development process. The other two

participants made no comment as to the value added by combining these two

methodologies.

As mentioned in the introduction, a key difference between agile methods and

UCD is the upfront resource allocation for planning and developing UIs. Our findings

introduced in Section 4.5 show that these differences were overcome in all the

approaches in the same way; compromise. This answered a third one of the key research

questions put forth by this study: “how are these two methodologies combined given that

they have very different upfront resource allocation techniques”?

 Some upfront effort was invested in the Initial Stage by all participants. But this

upfront design effort was rather limited compared to traditional UCD processes and more

resource heavy than traditionally allocated by agile teams. With this fairly short

timeframe, lengthy upfront research required by traditional UCD practices could not be

performed in much detail. This meant that smaller sets of UI features were gathered prior

 94

to implementation. It also meant that no UI code could be written by development until

those features were designed. This definitely had an effect on both methodologies in

terms of their original approach or process. This speaks to the forth of our research

questions: What effect does the integration of these two methodologies have on their

original approaches or processes?

Another aspect of our findings was the strategies for bringing the UCD process

into an agile project. As previously mentioned, all the participants projects were agile

from the beginning of their development lifecycle and therefore no findings relating to

the impact of integrating agile into an existing UCD process were found. On the other

hand, there were significant findings for when a UCD group member was brought into an

agile project. The two strategies that were evident were the End-to-End and the Niche

strategies presented in Section 4.8. This speaks to another of the research questions: what

strategies are being used to incorporate an interaction design process into an agile

software project?

Previous work points to the End-to-End being more effective than the Niche

strategy among the UCD professionals community [Error! Reference source not found.,

Error! Reference source not found.]. Our findings also suggest that the participants

favored the End-to-End approach.

There were other key factors that our participants felt were important to the

success of UCD integration into the process. These were: support from upper

management, support from project management, and support from users, as well as

 95

acceptance of UCD practices from developers put forth in Section 4.8. These key factors

confirmed the work by Gulliksen et al. [Error! Reference source not found.].

For example, P1 stated that support came from developers and management alike

once they realized the contribution of the UCDS actually made a better product. P3 stated

that after the first implementation of UCD into their process the managers and

customer/users asked for the process to be included in their next project. One participant

recounted a situation where a PM was not in favor of a UCDS being added to the process

but that the support did come from upper management and that was of great help [P9].

Other participants that were working with large corporations had support based on

previous projects and corporate acceptance of their previous success using UCDS

throughout the development process [P2, P4, P11, and P12].

5.2 Limitations of the Study

In this section we look at the limitations of this study.

This study is based on interviews with the participants. It may have been

beneficial to have observed the participants and their teams in their working environment

in order to gain the context of the participants experience first hand. This may, or may not,

have provided a different perspective in terms of their process of UCD Agile methods

integration.

Another facet of this study was that none of the participants worked on the same

team. This meant that there was a developer, a UCDS (or acting UCDS), or a Facilitator

interviewed from different teams but not from the same team. It may have been beneficial

to interview multiple individuals in two or three of these different roles on each team.

 96

This may have provided further insight on the integration process from the different

interacting roles on the same team.

Finally, all the participants had experience with UCD being integrated into agile

methods and not agile methods being integrated into a more traditional process with UCD

in place. It is difficult to determine if having both agile methods integrating UCD and

UCD integrating agile methods into their methodologies would have changed or further

reinforced our conclusions.out

5.3 Future Work

This study uncovered some interesting facts in terms of the way agile methods

and User-Centered Design are being integrated in industry. However, there were new

questions that emerged from that study as a result.

For example, all but two participants commented that they thought that the

integration of agile methods and UCD into their process was successful. An important

question that may be worth investigating is “Why did those participants feel that their

process was successful”? Another question along the same lines might be “How did you

measure success in your process to determine it was successful”?

Another theme that emerged from the data was the social ramifications of when a

UCDS joins a software project team. Comments like there was an “us and them”

mentality that surfaced with the developers towards the UCDS [P5], or “it took a while

before the developers realized that we made their life easier” [P9]. Other important

socially motivated questions that may be worth investigating might be: “Which is an

effective way to integrate a UCDS into an agile software development project to

minimize social out casting and maximize team gelling?” “Is the use of the name

 97

Usability Specialist a contributing factor for team member integration resistance or is it

just a question of lack of knowledge on the other team member‟s behalf?”

Finally, another key question that may prove to be valuable might be “what is the

optimal time, in terms of months, weeks, or days for upfront work to be completed by the

UCDS before development begins”?

 98

6.0 Bibliography

1. Fowler M.: The New Methodology, July 2005 [Online]. Available:

http://www.martinfowler.com/articles/newMethodology.html. [Accessed Feb. 12

2008]

2. Royce W.: Managing the Development of Large Software Systems. Proceedings,

In WESCON, 1970 pp 328-338 IEEE Press, 1970.

3. Marcus A.: User-Experience Planning For Corporate Success, Interactions,

volume 11, issue 3, pp. 24-27, ACM Press, 2004

4. Principles Behind the Agile Manifesto (ND) [Online]. Available:

http://agilemanifesto.org/principles.html [Accessed April 24, 2008].

5. Mezsaros G., Aston J.: Adding Usability Testing to an Agile Project, In Agile

2006, pp. 289-295, ACM Press, 2006.

6. Sy D. Adapting Usability Investigations for Agile User-Centered Design Journal

of Usability Studies ,volume. 2, issue 3, pp 112-132, ACM Press, 2002,

7. Patton J,:. Hitting the Target: Adding Interaction Design to Agile Software

Development, In OOPSLA, pp 1-7. ACM Press, 2002.

8. Maurer F., and McInerney P., UCD in Agile Projects: Dream Team or Odd couple

Interactions, volume 12, issue 6, pp 19-23, ACM Press, 2005.

9. Ferreria J., Nobel J., Biddel R.: Interaction Designers on eXtreme Programming

Teams: Two case Studies From the Real World, Proceedings of the Fifth New

Zealnad Computer Science Research Student Conference, Hamilton New Zealand,

2007.

http://www.martinfowler.com/articles/newMethodology.html
http://agilemanifesto.org/principles.html

 99

10. M Maurer F., Melnik G.: Agile Methods: Crossing the Chasm, In ICSE 2007, pp.

176-177, ACM Press, 2007.

11. Abrahamsson P., Warsta J., Siponen M., and Ronkainen J., New Direcetions on

Agile Methods: A Comparative Analysis, In ICSE 2003, pp 244-254, ACM Press,

2003.

12. Highsmith J.: History: The Agile Manifesto 2001 [Online]. Available:

http://agilemanifesto.org/history.html [Accessed April 25, 2008].

13. Conboy K., and Fitzgerald B., Towards a Conceptual Framework of Agile

Methods: A Study of Agility in Different Disciplines, Proceedings of 2004

workshop on interdisciplinary software engineering research, pp 37-44, ACM

Press, 2004.

14. Maurer F., and Melnik G., Agile Methods: Moving Towards the Mainstream of

the Software Industry, In ICSE, 2006 pp. 1057-1058, ACM Press, 2006

15. Bacon E.: Defining Interaction Design, Interactions, volume 12, issue 3, pp. 34-35,

ACM Press, 2005.

16. Nielsen J. Usability Engineering, San Diego California: Academic Press, 1993, pp.

23-27.

17. Preece J., Rogers Y., and Sharp H., Interaction Design: Beyond Human-Computer

Interaction, John Wiley & Sons: New York NY 2002, pp. 8-9,

18. Baecker R., Grudin J., Buxton W., and Greenberg S. Human-Computer

Interaction: Toward the Year 2000, 2cd ed., San Francisco: Kaufman Publishing

1995, pp. 95-106.

http://agilemanifesto.org/history.html

 100

19. Preece J., Rogers Y., Sharp H.: “What is Interaction Design” in Interaction

Design: Beyond Human-Computer Interaction John Wiley & Sons: New York

NY 2002, pp. 8-9.

20. Barnum I, Usability Testing and Research, 1
st
 ed., Campion, Ed. NY New York:

Longman Publications 2002, pp. 187-188.

21. Mao J., Vredenburg K. Smith P, Carey T: User-Centered Design Methods in

Practice: A Survey of the State of the Art, Proceedings of the 2001 conference of

the Centre for Advanced Studies on Collaborative research pp. 12-ff, IBM Press,

2001.

22. Beck K., Extreme Programming Explained, Addison-Wesley: Upper Saddle River

NJ. 2000.

23. Beck K. and Fowler M., Planning Extreme Programming, Addison-Wesley:

Upper Saddle River NJ. 2001.

24. Cooper A., The Inmates Are Running the Asylum: Why High Tech Products

Drive Us Crazy and How to Restore the Sanity. Pearson Education: Don Mills

ON. 1999.

25. Chaos Report Standish Group Report 1995. [Online]. Available:

http://wwwlib.murdoch.edu.au/find/citation/ieee.html#books. [Accessed May 8,

2008].

26. Cunningham W.: Manifesto for Agile Software Development, 2001. [Online].

Available: http://agilemanifesto.org/. [Accessed: May 8, 2008].

27. Armitage A.: Are Agile Methods Good for Design, Interactions, volume 11, issue

1, pp. 14-23, 2004,

http://wwwlib.murdoch.edu.au/find/citation/ieee.html#books
http://agilemanifesto.org/

 101

28. Fowler M.: Is Design Dead? [Online]. Available:

http://www.martinfowler.com/articles/designDead.html [Accessed April 3, 2008]

29. Hartman D. Interview: Jim Johnson of the Standish Group, 2006. Available:

http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS. [Accessed:

May 10, 2008].

30. Maurer F., Melnik G. What You Always Wanted to Know About Agile Methods

But Did Not Ask. In ICSE 2006, pp. 731-731, ACM Press, 2006.

31. Beck K., Andres C.: Extreme Programming Explained: Embrace Change, 2 ed.

Addison-Wesley, Boston, MA, 2004.

32. Merriam-Webster Online Dictionary. Available:

http://www.merriamwebster.com/dictionary/scrum [Accessed: May 16, 2008].

33. Takeuchi H., Nonaka I.: The New Product Development Game, Harvard Business

Review, pp 137-146, 2005

34. Schwaber K., Beedle M.: Agile Software development with Scrum. Upper Saddle

River NJ : Prentice Hall, 2002.

35. Schwaber K.: Agile Project Management With Scrum, Redmond Washington:

Microsoft Press, 2004.

36. Schwaber K. Explanation of Scrum Available:

http://www.controlchaos.com/download/Scrum%20Explanaion.pdf [Accessed:

May 16, 2008].

37. Schwaber K.: Scrum Rules, [Online] Available:

http://www.chaoscontrol.com/old-site/rules.htm [Accessed: May 16, 2008].

http://www.martinfowler.com/articles/designDead.html
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS
http://www.merriamwebster.com/dictionary/scrum
http://www.chaoscontrol.com/old-site/rules.htm

 102

38. Schwaber K.: Scrum Alliance: No Applause Please, 2006, [Online] Available:

http://scrumalliance.org/articles/31-no-appluase-please [Accessed: May 18, 2008]

39. Bacon E.: Defining Interaction Design, Interactions, volume 12, issue 3, pp. 34-35,

ACM Press, 2005.

40. Norman D. The Design of Everyday Things, MIT Press: New York, 2002

41. Law F., Kort J., Roto V., Hassebzahl M., Vermeeren A.: Towards a Shared

Definition of User Experience, In CHI 2008, pp. 2395-2398, ACM Press, 2008.

42. Alben L.: Quality of Experience: Defining the Criteria for Effective Interaction

Design, Interactions, volume 3, issue 3, pp. 11-15, ACM Press, 1996.

43. Hassenzahl M., Tractinski N.: User Experience – A Research Agenda, Behavior

and Information Technology, volume 25, issue 2, March April 2006 pp. 19-97.

44. Wright P., McCarthy J.: Empathy and Experience, In CHI 2008, pp. 637-646,

ACM Press, 2008

45. Hewett T., Baeker R., Card S., Carey T., Gasen J., Mantei M., Perlman G., Strong

G., Verplank W.: ACM SIGHCI Curriula for Human-Computer Interaction.

[Online] Available: http://www.sigchi.org/cdg/cdg2.html#2_1 [Accessed: May

19, 2008]

46. Juristo N., Ferre X,: How to Integrate Usability into the Software Development

Process, In ICSE 2006, pp. 1079-1080, ACM Press, 2006

47. Maguire M.,: A 15 Year Path of Usability Development in Europe, In CHI 2000,

pp. 195-196, ACM Press, 2000

48. Lee J.,: Embracing Agile Development of Usable Software Systems, In CHI

2006, pp. 1767-1770, ACM Press, 2006.

http://scrumalliance.org/articles/31-no-appluase-please
http://www.sigchi.org/cdg/cdg2.html#2_1

 103

49. Vredenburg K., Mao J., Smith W., Carey T. “A Survey of User-Centered design

Practice” In SIGCHI 2002, pp. 471-478, ACM Press, 2002

50. Mao J., Vredenburg K., Smith P., Carey T.: User-Centered Design Methods in

Practice: A Survey of the State of the Art, In CASCON 2001, pp.12-ff, ACM

Press, 2001.

51. Mao J., Vredenburg K., Smith P., Carey T.: The State of User-centered Design,

Communications of the ACM, volume 48, number. 3, pp. 105-109, IBM Press,

2005

52. Vredenburg K.,: Increase Ease of Use: Emphasizing Organizational

Transformation, Process Integration, and Method Optimization, Communications

of the ACM, volume 42, number.5, pp.67-71, ACM Press, 1999

53. Raven M., Flanders N.: Using Contextual Inquiry to Learn about Your Audiences,

ACM SIGDOC Asterisk Journal of Computer Documentation, volume 20,

number. 1, pp. 1-13, ACM Press, 1996.

54. Constantine L. “Beyond User-Centered Design and User Experience: Designing

for User Performance”, Cutter IT Journal, volume 17, number 2, [Online]

Available: http://www.foruse.com/articles/beyond.pdf [Accessed: May 24, 2008]

55. Cooper A.,: About Face 3 –The Essentials in Interaction Designs,, New Jersey:

Wiley Publishing, 2007

56. Nielsen J.: Finding Usability Problems Through Heuristic Evaluation, In CHI

1992, pp. 373-380, ACM Press, 1992.

57. Mack R.: Nielsen J.: Usability Inspection Methods, SIGICHI Bulletin volume 25,

issue 1, pp. 28-33, ACM Press, 1993,

http://www.foruse.com/articles/beyond.pdf

 104

58. Ferreira J.: Interaction Design and Agile Development: A real-World Perspective,

M.S. thesis, Victoria University of Wellington, Wellington New Zealand , pp. 61-

117, 2007.

59. Nelson E.: Extreme Programming vs. Interaction Design, [Online] Available:

http://web.archive.org/web/200060613184932/www.fawcette.com/interviews/bec

k_cooper/default.asp/ [Accessed: May 20, 2008].

60. Constantine L.: Process Agility and Software Usability: Toward Lightweight

Usage-Centered Design, [Online] Available:

http://www.foruse.com/articles/agiledesign.pdf [Accessed: May 24, 2008].

61. Powel R.: Recent Trends in Research: A Methodological Essay, Library and

Information Science Research, volume 21, issue 1, 1999, pp. 91-119

62. Gorman J. and Clayton P.: Qualitative Research for the Information Professional:

A practical Handbook, 2
nd

ed., London: Facet Publishing, 2005

63. Abusabha R. and Worlfel M.: Qualitative vs. Quantitative Methods: Two

Opposites That Make a Perfect Match: Journal of the American Dietetic

Association, volume 104, issue 5, pp. 566-569, May 2003, [Online], Available:

http://find.galegroup.com.ezproxy.lib.ucalgary.ca/itx/retrieve.do?contentSet=IAC-

Documents&resultListType=RESULT_LIST&qrySerId=Locale%28en%2C%2C%29%3AFQE%3

D%28KE%2CNone%2C37%29qualitative+vs.+quantitative+research%24&sgHitCountType=Non

e&inPS=true&sort=DateDescend&searchType=BasicSearchForm&tabID=T002&prodId=AONE

&searchId=R1¤tPosition=1&userGroupName=ucalgary&docId=A101796918&docType=I

AC [Accessed: June 5, 2008]

http://web.archive.org/web/200060613184932/www.fawcette.com/interviews/beck_cooper/default.asp/
http://web.archive.org/web/200060613184932/www.fawcette.com/interviews/beck_cooper/default.asp/
http://www.foruse.com/articles/agiledesign.pdf
http://find.galegroup.com.ezproxy.lib.ucalgary.ca/itx/retrieve.do?contentSet=IAC-Documents&resultListType=RESULT_LIST&qrySerId=Locale%28en%2C%2C%29%3AFQE%3D%28KE%2CNone%2C37%29qualitative+vs.+quantitative+research%24&sgHitCountType=None&inPS=true&sort=Date
http://find.galegroup.com.ezproxy.lib.ucalgary.ca/itx/retrieve.do?contentSet=IAC-Documents&resultListType=RESULT_LIST&qrySerId=Locale%28en%2C%2C%29%3AFQE%3D%28KE%2CNone%2C37%29qualitative+vs.+quantitative+research%24&sgHitCountType=None&inPS=true&sort=Date
http://find.galegroup.com.ezproxy.lib.ucalgary.ca/itx/retrieve.do?contentSet=IAC-Documents&resultListType=RESULT_LIST&qrySerId=Locale%28en%2C%2C%29%3AFQE%3D%28KE%2CNone%2C37%29qualitative+vs.+quantitative+research%24&sgHitCountType=None&inPS=true&sort=Date
http://find.galegroup.com.ezproxy.lib.ucalgary.ca/itx/retrieve.do?contentSet=IAC-Documents&resultListType=RESULT_LIST&qrySerId=Locale%28en%2C%2C%29%3AFQE%3D%28KE%2CNone%2C37%29qualitative+vs.+quantitative+research%24&sgHitCountType=None&inPS=true&sort=Date
http://find.galegroup.com.ezproxy.lib.ucalgary.ca/itx/retrieve.do?contentSet=IAC-Documents&resultListType=RESULT_LIST&qrySerId=Locale%28en%2C%2C%29%3AFQE%3D%28KE%2CNone%2C37%29qualitative+vs.+quantitative+research%24&sgHitCountType=None&inPS=true&sort=Date
http://find.galegroup.com.ezproxy.lib.ucalgary.ca/itx/retrieve.do?contentSet=IAC-Documents&resultListType=RESULT_LIST&qrySerId=Locale%28en%2C%2C%29%3AFQE%3D%28KE%2CNone%2C37%29qualitative+vs.+quantitative+research%24&sgHitCountType=None&inPS=true&sort=Date

 105

64. John M., Maurer F., and Bjornar T.: Human and Social Factors of Software

Engineering – Workshop Summary, ACM SIGSOFT Software Engineering Notes,

volume 30, issue. 4, pp. 1-6, ACM Press, 2005

65. Urquhart C.: An Encounter with Grounded Theory: Talking the Practical and

Philosophical Issues, In Qualitative Research in IS: Issues and Trends, pp. 115

Hershey PA: Idea Group Publishing, 2001.

66. Strauss A. and Corbin J.: Basics of Qualitative Research, 2
nd

 ed., Thousand Oaks

CA: Sage Publications, 1998.

67. Gulliksen J., Boivie I., Persson J., Hektor A., Heurf L.: Making a Difference: A

Survey of the Usability Professionals in Sweden, In NordiCHI 2004, pp. 207-215,

ACM Press, 2004.

68. Rosenbaum S.: A Toolkit for Strategic Usability: Results from Workshops, Panels,

and Surveys, In SIGCHI 2000, pp. 337-344, ACM Press, 2000

69. Venturi J., Troost J.,:Survey on the UCD Integration in the Industry, In NordiCHI

2004, pp. 449-452, ACM Press, 2004

70. Vredenburg K., Mao P., Smith P., Carey T.: A Survey of User-Centered Design

Practice, In CHI 2002, pp. 471-478, ACM Press, 2002.

71. Bruno V., Dick M.: Making Usability Work in Industry: An Australian

Practitioners Perspective, OzCHI 2007, pp. 261-264, ACM Press, 2007.

72. Nielsen J.: Guerrilla HCI: Using Discount Usability Engineering to Penetrate the

Intimidation Barrier, Academic Press, pp. 245-272, 1994.

 106

73. Fox D., Sillito J., Maurer F.: Agile Methods and User-Centered Design: How

These Two Methodologies are Being Successfully Integrated in Industry, In Agile

2008, pp. 63-72 , IEEE Press, 2008

74. Life With Software Engineering (ND) [Online] Available From: http://life-with-

software-engineering.blogspot.com/ [Accessed January 3, 2010]

75. Boehm B.: A Spiral Model of Software Development and Enhancement, volume

21, issue 5, pp 30-37, Computer, May 1988

http://life-with-software-engineering.blogspot.com/
http://life-with-software-engineering.blogspot.com/

 107

Appendix A – Study Questions

The following are the four main open ended questions followed by questions that arose as

a result of those main questions.

 Can you tell me about your background in terms of employment, or project types

you have worked on, and education/training?

o What is your position on the team?

o What is your role on your team?

o What is your educational background?

o What types of projects have you and are you working on e.g. Agile?

o Do you work with a usability specialist when you are developing say the

UI?

o How long have you been doing this?

o What can you tell me about the company you work for?

 What are the activities surrounding your software development approach?

o Where does your process start?

o What happens up front?

o Who are the members of your team?

o Who are the members of the team are you readily interacting with?

o Are you mitigating between UCD people and developers?

o Are you going into a work place or where are you drawing on you

contextual research?

o Who are at the planning meetings?

 108

o Is your team collocated?

o Do you user real users in your UCD testing?

o How do you go about testing?

o What tools do you use for prototyping?

o What are the roles on your team?

 Can you describe how the activities are put together to fit into your software

development process?

o How you go through a typical the iteration?

o In a typical iteration is the UCD team staying ahead of a development

cycle in terms of UI testing and design?

o Who are the members of the planning meeting?

o Does the UCD get passed before the end of the sprint for some sort of

testing or verification, or is it all just done at the end?

o During the initial phase there is no development taking place?

o So how long would this start up phase as the initial phase last?

o Do you think that high fidelity prototyping restricts your teams design or

development?

o Are there tools out there that you think might help your overall process in

terms of UCD and Agile development?

o Is development going on at the same time as UCD design and testing?

o Do you feel Agile methods is a successful development process?

o Do you feel adding UCD to the Agile methods process is effective?

o At what point do you the usability people come in?

 109

o When does the UCD design get passed to development?

o How long are typical iterations.

o How much time do you spend before development begins?

o Is there a UCD person(s) throughout the development lifecycle?

o How often do you communicate with the UCD folks/development folks?

 Can you tell me how the evolution of inducting Agile methods/ UCD into your

process transpired?

o When you brought in UCD persons is there resistance either from

management, developers, or UCD people?

o Are there issues up front bringing in UCD processes?

o Did bringing in UCD impact everybody in a positive perspective?

o Do you feel that Agile and UCD fit together well?

o Did you bring in a UCD person from the beginning of the project?

o What did you do to overcome the obstacles of bringing UCD into your

process?

o Do you feel that the time given to predevelopment was sufficient?

o Are you finding that your application development is more successful

using these two processes together?

o Do you intend on keeping your current practices in your development

process?

o Is there a tool for development/prototyping that is, or is not existing that

you think would be helpful in your software development process?

 110

Appendix B – Open Codes

The following are the open codes with example of the text the codes were applied to.

Table 4: Open codes applied to transcription data examples.

PAR-

TICI-

PANT

OPEN CODE EXAMPLE

P6 Addressing

change the

changing the

process of

development

Seeing projects going over budget, seeing clients

frustrated with seeing how much they were spending and

receiving such little value . So um decided to focus my

career on Agile and went in search of [company name]

and ah after a long courtship was ah I started with

[company name] a little over a year ago.

 P3 Adopting a

methodology for

their needs

Agile as a classic methodologies or classic practices that

have similar characteristics and within Agile

development you will find extreme programming and

scrum and feature driven development and all these

specific recipes and within Agile development you will

find that no one follows any 1 recipe. Rather they pick

and chose and they blend and they create an ad hoc or a

situation specific methodology.

 P8 Individuals

process

comparison to an

Agile author‟s

So that‟s just an accommodation that we‟ve already had

to deal with reality the fact that rarely do you have a

single person conducting meetings with all the users,

making all the decisions in some fashion. Which is ideal

for the Kent Beck model for XP.

P8 Concerned about

UCD process

from an Agile

perspective

But for areas that [Agile process] doesn‟t work very well

is UI. And that‟s partly because users don‟t like you

changing the interface but also the tools for UI

development don‟t seem to be nearly as good. A lot of

them are really clunky and when you start moving things

around you lose the code

P9 An Agile Model

component being

Pair programming was the other part of the Agile

development environment that I worked in.

 111

used in a

participant‟s

process

P4 Agile

requirements

gathering

We try to get everyone on the phone and walk them

through the wire frames. You know let them explore, let

them call out well this one doesn‟t work for me. Well

why doesn‟t this one work for you? Is it just one of your

personal preferences? Or is this a fundamental business

reason why this one doesn‟t work for you?

P4 Agile

requirements

gathering issue –

overcoming it this

way

So, so we often have 2 versions of the wire frames. 1

version of the wire frame has all these annotations with

all the politics and all the stuff for the stakeholders. Then

we have another version of the wire frame that has the

technical data. That says here‟s how to build this and

here‟s how to build that. And the developers don‟t care

about the politics and the stakeholders don‟t care about

the development details.

P3 Agile term -

Author specific

Now today it is ok to estimate a story from between a

half day to about 2 and a half days. Um and that‟s ok. So

that today is a user story and these big things are what

Mike Cohen calls an epic.

P3 Agile testing

perspective the

developers used.

We didn‟t do usability testing we done this kind of

continuous self inspection

P7 This Agile term is

used

interchangeably

with UCD

… things called iterations

P5 Alliances Sometimes those [team members and marketing

stakeholders] are our best sort of alliances because they

have a lot of information about what customers are

saying about the product.

P11 No available

information about

a product to be

developed

A lot of it has to do with that but you know of course

sometimes it‟s, it‟s a product that no one else really has

anything like that so this is a little more difficult.

P11 What helps with

the big picture

(overall vision)

The other thing in retrospect is that you know at the same

time we should have adopted more of you know the

UCD type of I guess more, more from a traditional stand

point. More of a big design up front but kind of just

enough upfront that it would help us really think out the

 112

developing system thinking types of things. Um that

would have been helpful that came back to bite us later.

P12 Participant

concerned about

building the right

product

I think I think that what it resulted in was building the

right portions of the product. Um and getting the product

to the market faster.

P8 Cart before the

horse – putting

product

technology before

the user

So it‟s really the analogy of putting the technology cart

before the horse. If you‟re thinking serious from the

technology perspective of we could build some software

were not really thinking about the user.

P7 Communication

throughout with

the user

So we bring users in at the requirements level.

P11 Communication

with the

developers and

UCD

. there was continuous feedback between those 2 groups

um during the entire sprint

P10 UCD

communicated

with the

developers this

often

By email I talk with them about 2 times a week. By

phone like 2 times that amount. And some times we have

used instant messaging like chatting. But a few times

when they have come to our side and we have talked, I

have talked with them it‟s like, it‟s like what we can

accomplish in 2 weeks by emailing and phone by

phoning in 2 days we can do that multiplied by 10.

P2 Communication

between the

developers and

UCD/bridge UCD

so it [conversations between UCD and development]

would be more of a kind of morph into. That would be

more of a, just a kind of conversation and that

conversation would happen in real time as opposed to

being tossed back and forth. does that makes sense

P1 Communication

issue.

Well sometimes it changes and sometimes it‟s technical

you know it might be in a domain that we‟re not at all

familiar with.

P1 Communication

issue between

developers and

UCD people

And sometimes you‟re in a situation where the …

sometimes you‟re in a situation where the customer and

the developers are very far apart from each other.

P9 Communicating

with the product

manager

So you would talk to the product manager. Because the

product manager had to be convinced that this was

important from a business point of view

P11 Company size What is interesting about [company name] is a very

large corporation

P12 Compromising

methodologies

You had these UCD people coming in and they have to

learn to adjust to not doing everything upfront.

P4 Consequences of

evolving

Well what we‟re pushing hard for is to get our

executives to really buy into the philosophy that this is a

 113

methodology project and you know everybody needs to work together

as a team and don‟t give us so much work to do. Cause

if, if we are left to our own devices we will do just fine.

P3 Consequences

using Agile

incorrectly

We are talking about a user story that may take 75 man

days and ideal days are these ah weird squiggly word that

XP uses. Which means, there is some load factor applied

to that. A common load factor for that is 3. So we are

talking about a user story that might have been estimated

in 25 days. Today, in 2007, if estimated a user story in 25

days you‟d be booed off the agile stage. Um you would

be sent straight to hell [ha ha ha]. Um straight to

waterfall hell and you would be forced to stand under the

waterfall until you, you learned your lesson.

P11 Contextual

inquiry - research

Typically in the second week what‟s happening is we‟re

doing the research, I‟m doing conceptual models too I

should mention that.

P10 Contextual

inquiry

So first when the projects didn‟t start [designing] I had 1

and a half months time to inquire of the knowledge about

users

P11 Customer role Usually there the executive staff. We‟re dealing a lot

with the CEOS, the CTOs and all those COs..

P1 Customer giving

requirements to

designer

If you can do it in this time frame we want it.

P2 Customer voicing

requirements

And I met with the customer came in and even before I

could get to any of that they said to me “look we‟re

going to take you thru the vision of you know, things we

want to achieve for the next period of time”.

P6 Customer

understanding

You know it „s you know it‟s an interesting thing with

us because of the type of clients we have. It‟s not that

they don‟t want it, there‟s 2 aspects of it. First it is

understands exactly what it means.

P5 Dependence work

– dependencies or

non-dependencies

in a team

environment

In some cases there is a lot of dependencies and

generally in an agency there is sort of a tighter timeline

so there isn‟t a lot of time to sit there. In my job now you

have a lot more time and you also work more

independently. You are not tightly coupled with a team

the way you are with an agency.

P5 Design do‟s and

don‟ts

So they can, well they feel themselves sometimes

capable of designing that stuff, you can usually tell that

this was designed by developers without sort a the

guidance of people like myself who, who can soften the

edges sometimes.

P9 Design is passed

from the UCD

team to the

And then to deliver the designs and the interaction details

specs at the beginning of the iteration.

 114

developers

P4 Design goes to

business

But eventually we will give it [the design] to a larger

team that that‟s outside of our team that would be

focused on the business side is what you might call it.

P4 Design goes to

the UCD team

Usually what happens is eventually we get to an

agreement and then it goes into a more interaction design

and the visual design stage. Where either the wire frames

get flushed out in more detail where we will actually pay

attention to some of the spacing. So it will be still be like

you know like a higher fidelity wire frame.

P4 The design or

application goes

to the customer or

acting customer

for approval.

We see the pros and cons of A and B so we are actually

going to take A and B to different groups outside the

team. They would be different stakeholders.

P12 Developers being

defensive to other

team members

[I have seen this] not necessarily here but I would say in

my career previous to being here I had observed that.

P9 Developers

testing step

happens this way

You know so there would be 2 or 3 days of development

and then testing would start you know a couple days later

and then it would basically… they would clean up what

ever testing found with in the iteration.

P4 Documentation But we are finding that it is pretty easy to document it for

the developers. But then we also have to do another kind

of documentation for the stakeholders.

P12 Doing things

differently than in

the past ad

reflecting on it

But you know in retrospect it the thing that was it was

better than we started out and this mostly partial... mostly

my fault. When we started out I thought you can do the

design and then just build the entire design but in

retrospect it is easy to fail because everything is based on

a development mind set. It is easy to miss the big picture.

the places where we had UCD you know the people we

would group into that UCD bucket; graphic designers

IDs, and human factor engineers, and usability engineers

as well. um I think that for them to really excel and

thrive they needed to be able to think at a systems level

thinking. and you know in retrospect

P4 Doing a

methodology or

practice without

knowing

I think that it was all of the standard reasons. It was just

compounded because in the web you are kind of forced

to do that anyway. It‟s because you got your stuff done

so fast or you can‟t compete. So it‟s, it‟s like a no

brainier when you are working on the web. Even if you

don‟t call it Agile most of the teams I‟ve worked with do

some version of it Just because it‟s baked into your blood

if you are doing web work.

 115

P9 End-to-end

strategy – having

a UCD person

involved

throughout the

entire project

Well I lean quite heavily towards end to end because in

my experience, when you are brought in you know just

to solve one thing you usually see 400 other things that

ought to be fixed. And it is extraordinarily frustrating as

the user usability person to then you know I don‟t know

to populate 1 dialog or do something small

P10 End user – their

role/ description

I you ask me if the role of the end user shouldn‟t be too

big when designing design because users/customers can‟t

focus and on focus on wrong things. They start to focus

on key things and not acting out enough of the

interaction behind the in the product; interaction behind

the product.

P12 Found the

project/methodol

ogy successful as

a result of this

practice/variable

This [UCD inclusion] allowed us to build things much

faster um and also to build the right thing.

P6 Found the

project/methodol

ogy unsuccessful

as a result of this

practice/variable

My background on a number, couple of waterfall

projects was up front doing user interviews. And um over

the course of 5 years I‟ve probably worked on I‟ll say 10

different projects where I didn‟t see a single one of them

complete development because they ran out of money

P2 The team member

found this to be a

positive aspect of

the methodology

they are using

And I would say of all the Agile practices the 2 most

valuable are the concept of the short time-boxed releases

and having the customer as part of the team.

So those are the, those are the things that create the

greatest value I think.

P5 Gaps

understanding

their process

Well I am still trying to figure that out actually [their

process] I have been here I don‟t know about 10 months

maybe But it is very different here the ways things get

done here. They couldn‟t be more different than I am

used to. So working, with a big company with remote

teams. Some are in India, some are here, some are across

the US and Canada Um it just um takes a long time to get

things done some times. It takes a long time to get a

consensus, track people down etc. so you know I think

you know I am not sure I know the answer to that

question. I am still trying to figure it out.

P3 Role as a

generalist

I‟ve been trying to be a generalist in that field as well so.

 Gorilla tactic –

this is the user‟s

explanation of

their practice

process

It is a very brut force approach to getting the UCD inside

the process. What happens is that you know obviously

with a lot of this industry, I mean this field, you realize

that you have to some [na] sometimes. You have to take

it to a level that that‟s the only way that it‟s [the UCD]

going to get in.

 116

P11 Hallway testing

technique

Our hallway usability would be something of that nature.

We do some of that where it‟s you know where we need

time to interview actual people and see what they think.

Right, because we‟ll get a lot of you know executives

that say this needs to be targeting you know ah soccer

moms as an example. Right? We have no soccer moms

to talk to.

P5 Hard core

developers – roles

or a culture in the

team?

But I think software, you know, development in general

there is some fairly deeply entrenched sort of cultures

and ideas. Not like in the hard core software world

P6 High fidelity

prototyping

within this team

We have used them in the past when the client asks for

them. Where they specifically want to see a hi-fi type

layout screen mock ups. We will definitely do that. It‟s

not what we recommend. We recommend putting the

effort in area like development and ah in planning of ah

other areas.

P9 The participant

really liked this in

their process

I had to say a bottom line I love XP by the way.

P4 The participant

would like this in

a tool

Maybe there is a way to do attachments or what ever but

you know these things tend be like 10 megabits

sometime. You know very large files. Like, but having

that connection to our day to day stuff and then sort a

have it generate a report that says ok here is the end of

the 2 weeks, here‟s the list of all the stuff that people did

and here‟s, here‟s all the .pdfs right there all in 1 spot

P7 Working

independent of

the team

In my job now you have a lot more time and you also

work more independently.

P5 Interesting

process

perspective

But you know adopting process to fit the need instead if

trying to fit the need into the process um I‟ll advocate for

the former.

P9 Participant

working one

iteration (at least)

ahead of

development

I was working 1 iteration ahead of the developers and as

for implementing they would say ok this is how I‟m

doing it, am I doing it right

P12 Participant‟s

iterations are

typically this long

Basically 1 cycle we were using 2 week iterations

P12 Iterative

explained by

Agile participant

So we go in a circular motion. The idea is what are the

user goals, How can we capitalize on that and is it

technically feasible?

P4 Iterative

explained by

We‟ll first iterate with them within our own team, within

our, our design team like with our RAs and other folks

 117

UCD participant just to make sure we are all on the same page. We‟ll

often come up with you know maybe 3 different versions

of it.

P4 Keeping your eye

on the big picture

think about the vision, think about the vision so then we

can sort of do that a little bit at a time and, and we‟re not

completely designing small user experience without

thinking about the big picture.

P9 Learning what the

contribution of

UCD to a project

is

I‟m not saying I‟m not saying that there isn‟t

organizational resistance, but it isn‟t developers. Very

quickly developers start to see oh my God this person

makes my job easier. Right?

P13 Location Yes, we were all located in the same building.

P6 Lo-Fidelity

prototyping

And we would use Visio, and I became a Visio expert

and could do any number of things with that tool, to put

together prototypes and process flows and process

mapping.

P6 Low fidelity

prototyping for

the customer‟s

understanding

But after the first couple of iterations you have more

functionality that the user can sit down and play with in

every session. I involve more people in the observation

process cause they can help distill information and bring

it back to the business. Typically what would be after a

focus group session where we are observing users, is

we‟ll bring all of the information we‟ve gained back

from that, present it back to the business. Basically

evaluate what‟s important to the business, to change or

improve or you know perhaps leave the same. We

present all that back to them and then they determine

what they want to do with that information.

P6 Medium-fidelity

prototyping

Moving these around to come up with an overall design

of what you think a certain screen would look like. And

then you take that away and you can um I don‟t know um

what you‟d call them maybe medium-fi prototyping

where you actually use a tool

P1 Meeting with the

customer – face

to face

So a lot of the work is not just the design that‟s really

interfacing you know, it‟s really interfacing with the

customer a lot.

P1 Participant is

meeting with the

customer for

UCD reasons

What‟s very important to do is to meet the customer and

really understand the (UCD) problem before ah

developing something for them

P7 Evolving a

participant‟s

methodology

So a bit of both. The basic structure (their methodology)

is there but we do need to evolve because we are a

service organization. Right?

P12 Team morale [Researcher] - OK, and what you‟re saying basically is

then the entire process was basically really positive? So

everybody walked away happier.

 118

[Participant] -oh absolutely, absolutely

P5 Niche strategy –

UCD person

brought in for a

specific fix

But then you know there is a lot of interaction design UI

design people work specifically on you know strategic

stuff. So this, this application has this usability problem

here that you have to work on and that‟s, that‟s strategic

in a sense that is very tactical and not, not certainly end

to end type of project.

P5 Working on

projects that are

not really Agile

Yeah that certainly as been my experience with you

know the times I have been involved with agile type

methodology. It is usually sold as that, or a client has

requested it. So, the client says, well all right, your team

does agile methods, so you guys have to adhere to that.

And the people that are selling the project go yeah no

problem we all know all about that.

P2 Methodology/pro

cess evolution

We had a fairly strong development team but for the

most part was open to trying something new. Yeah we

got the actual development team kind of excited about

this idea. We got people kind a pulled in. We were

running a little study group on agile and different people

on the team coming and presenting on different aspects

of it to the rest of the team. And we brought in some um

experts to help advise us and stuff like that.

P10 Use of personas We use the time to construct the personas and then the

developers came in. I had the personas and we decided in

the first planning day which person described the best of

our target user.

P12 Planning

meetings

So if they were looking at doing contextual inquiries type

things ahead of time then they would usually be there as

a to present the items that were going to be estimated

and planned t put in the backlog.

P9 Interacting with

the project

manager

I would work with the product manager to make sure

those things were in iterations. Future iterations.

P4 Problems arise in

the project

when…

Right, so you know cause in the past you know one

Information Architect was on this one project for six

months, if he left the company we were screwed right?

All of his knowledge went with him

P1 Participant

relating to the

overall project

vision

And there‟s also just the whole project plan. Like we

want to have these features implemented by this date,

you know but that‟s done more by the official project

manager per say. And there‟s like this project plan that

will be some very specific, you know, screen by screen

details.

P4 Release times To do it incrementally, to do it in small chunks and not

take 12 months to do a major release. You, you roll out a

 119

new feature here and a new feature there.

P8 Working

requirements/feat

ures are set this

way

so there was you know every 2 week there would be an

iteration planning meeting where people would decide

the work for the next couple of week

P12 Resolving

challenges with

customers

So it‟s a matter of cost and time. So it you know we‟ve

noticed we‟re bringing it down to a certain level where

they want it. If you can do it in this time frame we want

it.

P12 Resolving

challenges with

the development

team

And I don‟t think we had anybody with that view point

on our team after seeing the contributions of what that

UCD group brought to us.

P9 Resolving

challenges with

the UCD folks

So with the product manager I would because he wasn‟t

a usability person so he was even sensitive to many sorts

of usability issues. So there was an education process

P13 Resource costs Yes, there was an amount of time set aside for us to do

our thing [research, contextual inquiry…] that did cost

[company name] some money.

P4 Roles I mean our team is like 8 people and then there is a team

of 5 other people that focus on doing the user research.

P1 Scenarios

produced for the

developers

And sometimes they come up with scenarios that you

know may never happen. So sometimes it is

[evaporating] around the scenario. And this is when I

write test clips about when they do implement a certain

feature of the application. Following the test clips is like

following the scenario of how somebody might actually

use the system.

P4 Scenarios for

user/customers

Yeah we will often do a little scenario like pretend that

like you are a user here and your goal is to find this one

piece of content. So you first come to the first page you

try out this link to that page to the next page. Then you

pull down a ….you choose from this pull down and you

choose another thing and then you know by the 4th

screen you have gotten to where you want. So we will

often have a little scenario that people can follow thru as

apposed, … you know to that, that matches one of our

use cases.

P1 Participant‟s

interaction with

the

client/customer

frequency

Well you know it‟s all kinds of things. Like if they have

a regular weekly meeting. There might be times in the

project where I would like to go every week. But um you

know getting together face to face if at all possible ah

then we follow up with a phone or a chat or email.

P8 These processes

are separated in

the development

And what happened today is the 2 processes [design and

development] are completely disconnected, something

that is thrown over the wall firm 1 process into the other

 120

process process Development team has to it the ground running

not waste any time.

P12 What happens at

start up

you know we were sort of deriving everything from the

beginning

P12 Tandem design

and development

Well we didn't end up at the beginning but ended up

trying to work more ahead of the development team.

Basically 1 cycle we were using 2 week iterations so we

would try to stay 2 weeks ahead of the dev team.

P9 Team

concerns/issues

So it was sort of like… and then I mean I picked up a

little design project and I made a design and I brought

it …[development said]oh you completely focusing on

the wrong things and this is a really nice design but we

don‟t have time to do this anyway blah, blah. So there

were 2 or 3 different ways I tried to interact with them.

Proposing my ideas, or asking them for more information

on how they were approaching it. On both occasions they

were quite closed.

P9 Team

membership/inclu

sion

I think it‟s really it depends on how you are introduced

into the team.

P5 Team size Let‟s see how many people do we have in our group? 1

2 3 4 5 let‟s see 7 8 9. Yeah there are ten of us in this

department.

P2 Testing difficulty That‟s not a problem if it‟s a functional test where it‟s

all contained within a kind a single application that‟s

usually ok. But where we are actually trying to get into

this situation where we are spanning applications

which … and when you get into enterprise systems

that‟s clearly is not uncommon

P1 This technique

made the

customer happy

Because you‟ve shown your dedication to getting it right

by spending time there with them [the customer].

P2 Tool wise I would

like this

And as I mentioned we‟re working with someone to

build something like that. We‟ve spoken with [person‟s

name] about this too, on the testing side. There are

certain types of tests that we have difficulty in

performing. So unit tests aren‟t a problem. Having

automated unit tests, certain types of functional tests we

have difficulty in automating, as a single tests that…and

if we had a tool ah that could do that, that would be of

value to us so…

P6 The tools I use

are

Um typically we do low-fi prototyping in an agile project

with sticky notes on a white board.

P6 UCD Agile

mixed team

In agile dev but also incorporating UCD in a lot of what

we are doing in agile projects.

P9 UCDS‟s concerns I guess developers have things to do with the software

 121

about

development

mindset

that aren‟t necessarily in a user casing, because you

know one of the developers used to say 50% of the

software is invisible to the user right?

P12 UCD and

development war

So from a methodology stand point it seems like the

UCD side of the war is evolving kind of a little bit

behind the development side of the world. From a

methodology stand point.

P12 UCD has

opposition

towards

development

I would say that there I think there would be more

opposition from the UCD group towards the developers

then there are from the developers towards the UCD

group.

P12 UCD

methodology

evolution

Yeah um I think that I guess looking at the evolution of

usability not just UCD I guess but UCD and interaction

design and everything around that general area, is still is

it seems to me and this is as an outside observer, and I‟ve

never done this job before but it feels to me the field is

evolving.

P1 UCD component

is in the

development

process

And I do practice UCD practices with all these things

[projects] I‟ve done.

P7 UCD

requirements

gathering

In the next phase we will flush out any of the tasks that

we need to. So we will go back and do more task

analysis and detailed GUI design.

P1 UCD

requirements

gathering

issue/communicat

ion overcome this

way

Even then you might get something solved and then you

try it out, you make some rough representation of a UI,

you show it to them and then they‟ll say oh yes you

know but it might organized this like this. This would

come before that. It doesn‟t make sense how you have it

now.

P11 UCD technique

used by the

participant

Which gets split up onto 3 areas. So we carry the strategy

piece, we do the wire framing piece and we do the …

actually 4, we do the visual design and we do the client

development. All the way up to you know cutting the

HTML

P1 UCD testing step Well when I first laid out the system you know I have an

area of the screen for this type of text, these kinds of

navigation buttons for things like that. Just to make sure

that overall grid is respected.

P10 Up front stage So first when the projects didn‟t start I had 1 and a half

months time to inquire, be of knowledge about users and

ah build up the personas.

P5 Us and them There is sort of an “us and them” type of mentality that

seems to exist. You know you do get agilest who, who

have worked successfully with usability people or design

 122

people. But frequently you get that sort oh we know what

we are doing and you know you get these, these usability

people coming in and they slow us down, right?

P5 The user advocate Yeah definitely, because there are a bunch of competing

stakeholders. You know you have business stakeholders.

You‟ve got product managers stakeholders. You‟ve got

development stakeholders, people who are actually

building it. And then nobody in those realms, although

they are important, none of them are sort of in the unique

position of advocating for the people that are actually

gong to be using the product.

P2 Agile adds value

to the project

Much of the value behind any of the agile processes I

think is the realization that, that change is inevitable and

it‟s not just the result of poor planning.

P2

This is added

business value to

the project

Right? And sometimes we‟re doing things purely for

business value that the user might not even , you know

that is directly seen

For example if you imagine that we decide we need to

collect certain types of metrics in the application.

P2 Added value We could get a lot of value if we had something that

could really allow us to implement that kind of thing as a

single test.

P12 Added value for

the user

When they are using the application right. It benefits the

user.

P3 Waterfall

mentality

That‟s, that‟s waterfall thinking to separate those two

concerns.

P3 We are this as a

team

We were all user centric in the way we thought and

worked with them.

P4 We are using this

methodology

They‟re also working agile, so we, we kind have this

Agile [UCD] design team working in conjunction with

an agile development team.

P4 We found

improvement in

our process

through

It forces us to not think in terms of let‟s do this let‟s

spend 4 months designing something and see if it‟s any

good. In, in the web world today you cannot afford to do

that.

P2 Trying different

methodologies

And we‟ve tried a couple of different approaches with

this and I don‟t know if we have a right answer or not..

P5 What team

members think

about this process

developers/UCD

Well I think, you know, I think that the perception it

[UCD] that it slows down the process a bit.

P5 Who works on

what -roles

Yeah it depends on the company and you know I mean

more junior people tend to work on more strategic

enhancements. You know tactical stuff where as the

experienced people tend to do the end-to-end stuff.

P7 Work experience Ok. So um I have been in the, I guess the software

 123

industry, if you want to call it that for about 11 years. I

have worked in oil and gas internet IP, medical software

in military. I have an undergraduate degree from here, at

the University of Calgary in computer science. And no

specialization though. I did focus my degree on software

um engineering and HCI.

Appendix C – Coded Categories
The following table represents the initial Open codes and how they were categorized

during Axial coding. Please note that some of the codes appear in more than one category

as they have some relevance to both categories.

 124

DERIVED CATEGORY CODES

Upfront predevelopment stage

and resources allocation
 What helps with the big picture (overall

vision)

 Contextual inquiry – research specific

 Contextual inquiry

 Documentation

 Keeping your eye on the big picture

 Participant relating to the overall project

vision

 Resource costs

 What happens at start up

 Up front stage

Roles – who is doing what Customer role

 Customer voicing requirements

 Dependence work – dependencies or non-

dependencies in a team environment

 End user – their role/ description

 Role as a generalist

 Gorilla tactic – this is the user‟s explanation

of their practice process

 Hard core developers – roles or a culture in

the team?

 Working independent of the team

 Roles

 We are this as a team

 Who works on what –roles

 Work experience

Compromises – who is giving up

what
 Participant concerned about building the right

product

 Compromising methodologies

 Consequences of evolving methodology

Passing designs around –

between customer/users,

development, and UCD folks

 Customer giving requirements to designer

 Design is passed from the UCD team to the

developers

 Design goes to business

 Design goes to the UCD team

 The design or application goes to the

customer or acting customer for approval

Tools –what are used and what

would like to be used in the

process

 High fidelity prototyping within this team

 The participant would like this in a tool

 Lo-Fidelity prototyping

 Medium-fidelity prototyping

 Use of personas

 Planning meetings

 125

 Scenarios produced for the developers

 Scenarios for user/customers

 Tool wise I would like this

 The tools I use are

Team dynamics Concerned about UCD process from an Agile

perspective

 UCDS‟s concerns about development

mindset

 Communication issue.

 Company size

 Dependence work – dependencies or non-

dependencies in a team environment

 Developers being defensive to other team

members

 UCD and development war

 UCD has opposition towards development

 Learning what the contribution of UCD to a

project is

 Team morale

 Resolving challenges with customers

 Resolving challenges with the development

team

 Resolving challenges with the UCD folks

 Team concerns/issues

 Team membership/inclusion

 UCD Agile mixed team

 Us and them

 What team members think about this process

- developers/UCD

Customer/User/Developers/UCD

folks/Team communication
 UCD communicated with the developers this

often

 Communication throughout with the user

 Communication with the developers and

UCD

 Communication between the developers and

UCD/bridge UCD

 Communication issue.

 Communication issue between developers

and UCD people

 Communicating with the product manager

 Meeting with the customer – face to face

 Resolving challenges with customers

 Participant is meeting with the customer for

UCD reasons

 126

 Interacting with the project manager

 Participant‟s interaction with the

client/customer frequency

Testing Agile testing perspective the developers used.

 Developers testing step happens this way

 Hallway testing technique

 Testing difficulty

 UCD testing step

Methodology Process and

Adaptations
 Methodology/process evolution

 Tandem design and development

 Addressing change and changing the process

of development

 Adopting a methodology

 An Agile model component being used

 Agile term - Author specific

 Consequences of evolving methodology

 Consequences using Agile incorrectly

 Doing things differently than in the past and

reflecting on it

 Doing a methodology or practice without

knowing

 End-to-end strategy – having a UCD person

involved throughout the entire project

 Gaps understanding their process

 Gorilla tactic – this is the user‟s explanation

of their practice process

 Participant working one iteration (at least)

ahead of development

 Participant‟s iterations are typically this long

 Iterative explained by Agile participant

 Iterative explained by UCD participant

 Evolving a participant‟s methodology

 Niche strategy – UCD person brought in for a

specific fix

 Planning meetings

 Release times

 Team size

 UCD Agile mixed team

 UCD methodology evolution

 UCD component is in the development

process

 UCD technique used by the participant

 We are using this methodology

 We found improvement in our process

 127

through

 Trying different methodologies

Requirements Process Agile requirements gathering

 Agile requirements gathering – overcoming it

this way

 Customer giving requirements to designer

 Customer voicing requirements

 Working requirements/features are set this

way

 UCD requirements gathering

 UCD requirements gathering

issue/communication overcome this way

Project Process/Methodology

results
 Found the project/methodology successful as

a result of this practice/variable

 Found the project/methodology unsuccessful

as a result of this practice/variable

 The team member found this to be a positive

aspect of the methodology they are using

 The participant really liked this in their

process Team morale

 Problems arise in the project when

 This technique made the customer happy

 Agile adds value to the project

 This is added business value to the project

 Added value

 Added value for the user

 We found improvement in our process

through

Miscellaneous Individuals process comparison to an Agile

author‟s

 This Agile term is used interchangeably with

UCD

 No available information about a product to

be developed

 Cart before the horse – putting product

technology before the user

 Design do‟s and don‟ts

 Interesting process perspective

 Location

 Low fidelity prototyping for the customer‟s

understanding

 Working on projects that are not really Agile

 These processes are separated in the

development process

 128

Table 5: Open codes assigned to their initial categories.

Appendix D – Co-Author Permissions

 Team size

 The user advocate

 Waterfall mentality

