
Adapting Existing Applications to Support New Interaction Technologies:

Technical and Usability Issues

Darren Andreychuk, Yaser Ghanam, Frank Maurer

Department of Computer Science

University of Calgary

Calgary, AB, Canada T2N 1N4

{yghanam, djandrey, fmaurer}@ucalgary.ca

ABSTRACT

Engineering interactive systems for use on emerging

technologies such as touch-enabled devices and

horizontal displays is not straightforward. Firstly, the

migration process of a system from an old hardware

platform to new multi-touch displays is challenging.

Issues pertaining to scaling, orientation, new input

mechanisms, novel interaction techniques and different

SDKs need to be examined. Secondly, even after we

manage to understand and resolve these issues, we need

to find effective ways to migrate applications and

maintain them.

This paper contributes a thorough analysis of the

technical and usability issues that need to be considered

when migrating systems to different touch-enabled

technologies including vertical and horizontal displays.

Keywords

Adaptation, Multi-touch, Variation

INTRODUCTION

As hardware vendors continue to produce novel

technologies such as touch-enabled PCs [6] and digital

tabletops [8, 11], efforts are being made by researchers

and practitioners to utilize these technologies in

improving the usability and usefulness of existing

software systems. This issue is becoming more

common as new technologies appear in the marketplace

and it is increasingly important for practitioners

looking to provide support for them. However, taking a

system that was originally built for a normal PC and

simply deploying it on a new hardware platform such

as a digital tabletop is limiting the usefulness of the

device. This is because we first need to understand the

implications of the change in hardware capabilities and

how it might hinder/improve the migrated system.

Furthermore, the traditional top-down system design

approach does not fit the more dynamic nature of

interactive surfaces since new products continually

appear at different times in the marketplace.

Software engineers can interface with the new

hardware capabilities using the software development

kits (SDKs) provided by the vendor – and each vendor

currently provides their own SDK (which is

incompatible with the SDKs from other vendors).
1
 New

challenges arise due to the constraints these SDKs

have, and also the level of abstraction they operate at.

For example, if the APIs provided are too fine-grained,

it might be necessary to introduce a level of abstraction

that makes reuse of meaningful artifacts possible (e.g.

rotatable and translatable object). On the other hand, if

the APIs are too abstract, they can limit access to data

that is deemed necessary in certain applications (e.g.

the angle of the touch point with the surface). In this

case, practitioners need to find workarounds and

incorporate them in a systematic way. Furthermore,

different vendors use different feature sets for

input/output mechanisms. This makes deploying a

software system on different hardware brands

challenging.

The other important aspect is usability. When

developing applications for touch-enabled PCs and

horizontal displays, the type of input expected from the

user and the way the user interacts with the surface are

not the same as their counterparts on old-fashioned

platforms. That is, what is highly usable on a vertical

screen can be of a very poor usability on a horizontal

one and vice versa. This implies that it is not trivial to

migrate systems that were originally built to target

vertical screens to machines that utilize horizontal

displays as a front end [10, 13]. While the underlying

functionality of the system is probably the same in both

environments, interaction and presentation need to be

retailored to suit the newer technology. If we were to

deploy a customized solution on each platform,

whether vertical or horizontal, we will also need to

maintain these solutions. And as the number of

supported platforms increases, maintaining different

solutions has to be efficient to be economical.

Therefore, applying the proper software engineering

techniques to solve this issue is imperative. The

question we answer in this paper is: How can we

deploy customized solutions on different touch-enabled

technologies including vertical and horizontal displays

and maintain these solutions efficiently?

1 Windows 7 provide options for vendors to support multi-touch

with their hardware in a standardized way. How many vendors

will use it is not clear at this point in time.

To answer this question, we first define two factors:

1. Technical issues: evident in the SDK

definition and abstraction, as well as the

various hardware platforms to be supported.

2. Usability issues: often resulting from

migrating an application from vertical to

horizontal surfaces.

The rest of the paper is organized as follows. First we

talk about related work. Next we discuss the specific

context of our experience. We present our approach to

solve the problem at hand. Next we discuss the

implications of the reported experience for

practitioners. Finally, we highlight our conclusions.

RELATED WORK

Migrating applications that were originally developed

for vertical displays over to horizontal ones is

becoming common. These applications span over a

wide range of domains such as education [7], meetings

[5], arts [12], programming [4], games [1] and many

others. DigiTile [10] and AgilePlanner [13], for

instance, are applications that started out on a vertical

surface. They were then migrated to horizontal surfaces

and a number of issues were reported such as the

tabletop size, orientation and the user group size.

Challenges like multiple collaborators working at the

same time and standard GUI components being

unsuitable for the new environment were observed and

addressed. Other applications also exist that intend to

support a hybrid of vertical and horizontal displays

such as WeSpace [5]. Besacier [2] suggested a generic

technique to support the use of legacy applications with

innovative interaction systems by rewriting the user

interface toolkit. Other efforts such as [9] tackled the

same issue from a different perspective by using the

accessibility API to adapt the user interface to new

interaction techniques. Our work is different in that we

are interested in all aspects of variability across

different interactive systems, and we try to achieve high

efficiency in the migration process as well as

deployment and maintenance.

EXPERIENCE CONTEXT

System Overview

The application we will discuss throughout this paper is

called eHome. It is a software system to monitor and

control smart homes. Generally, the interface of the

application consists of a floor plan representing the

smart environment to be controlled, a number of items

that can be dragged and dropped on the floor plan, and

a set of graphical user interface (GUI) controls.

Interacting with eHome occurs in User Mode where

dwellers can view and modify the current status of

lamp devices, track items in containers using RFID

technology and obtain climate information in the house,

and Design Mode where dwellers can register new

lamp devices, containers and sensors in the system.

Initial Development

An industrial partner we have been working with for

the past two years requested all of the abovementioned

features. The initial request was to deploy eHome on an

HP TouchSmart PC [6] which has a single-touch

vertical display. However, actual development of

eHome was done on normal PCs with different screen

dimensions and no touch capabilities. When we

deployed eHome on the HP machine (which happened

frequently because we had a testing HP PC onsite), we

often needed to adjust certain scaling factors to fit the

HP wide screen. We also realized that some decisions

that had been made during development on the normal

PCs needed to be revisited. Examples are:

- The size and design of some GUI elements made it

challenging to interact with eHome using a finger

touch because the latter is much thicker and less

accurate than a mouse pointer.

- One event in eHome was triggered by a right-click

which, on a touch-screen, did not make sense.

New Technologies

As we went along, we wanted to deploy eHome on a

large-scale SMART DViT Table [3] with an older

version of the SMART SDK. A later request from our

partner was to deploy eHome on a digital tabletop they

had recently purchased. Specifically, it was the New

SMART Table [11] which supported multi-touch input

and had a newer version of the SMART SDK. Later on,

we obtained a Microsoft Surface [8] and we decided to

include it within the hardware platforms that we should

support. As more platforms were supported, more

decisions were revisited and the software design

underwent drastic yet incremental changes. These

changes were mainly driven by the two factors we

mentioned in Section 1: technical issues and usability

issues. Examples of such issues include:

- Three different SDKs that dealt with touch point

input, one for each hardware platform.

- Conventional GUI elements like menus and tabs

assumed a single orientation (vertical).

Sources of Variability in eHome

The technical and usability issues were not the only

sources of variability in eHome. In fact, the first source

of variability was business-driven. Smart homes vary

widely with regards to what smart devices exist in the

home, and what kind of monitoring and controlling is

requested by a given customer. This variation in

requirements often results in delivering a different

application for each smart home. However, in spite of

the differences between these applications, they share a

lot of underlying functionality and business logic.

In the discussion to follow, each section talks about one

variability aspect. For each aspect, we analyze the

issues we encountered and their implications on our

system, and then we describe our approach to contain

them.

Variability within Vertical Displays

By vertical displays, we refer to the normal PCs that

were used by developers to develop eHome as well as

the HP TouchSmart PC on which eHome was initially

deployed. The differences between these two groups

were issues related to the mouse-versus-touch input.

Table 1 describes these issues and their implications.

Table 1 – Issues leading to variability between a normal PC

and an HP TouchSmart PC

Issue Implication

Right-click events

do not make sense

on a touch screen.

An alternate way (provided

by the HP machine) to

capture the right-click

event on the touch screen

was „press-&-hold‟.

The tip of the mouse

cursor is tiny and

accurate compared

to the tip of a finger.

All GUI objects have to be

larger to accommodate the

finger touch more

precisely.

When applying a

touch on the vertical

surface, the body of

the finger covers

some content on the

screen (Figure 2a).

A vertical slider that was

used to control the

intensity of a light was

changed into a horizontal

slider (Figure 2b).

(a) (b)

Figure 2 – (a) part of the vertical slider is blocked by the

body of the finger. (b) the horizontal slider solves this

issue.

As mentioned earlier, the development for normal PCs

and HP TouchSmart PCs was the initial stage in the

evolution of eHome. At this stage the Presentation

layer included all the view-related elements, whereas

the UI Controller managed the communication between

the Presentation layer and the Data Object Model. The

Hardware Controller was responsible for

communication between the actual hardware devices

with the Model or the UI Controller. External

Resources included the hardware devices, XML

configuration files, and web services.

Figure 3 – eHome architecture after considering

variability at the Presentation layer.

At first when we only considered the first issue (right-

click vs. press-&-hold) as a source of variability, a

conceptual layer was added to reflect this variability as

shown in Figure 3 (previously, input was managed

within the Presentation layer). The common platform

included everything but the Input Manager where

variability occurred. One variation point (source of

variation) was defined as “input mechanism” with the

two variants (instances) “mouse” and “touch.” Later,

when the other two issues were to be managed,

variability penetrated down to the Presentation layer as

shown in Figure 3. That is, the variability profile we

had so far could be described as:

 InputMechanism = {mouse, touch}

 InputMechanism = {mouse, single touch, multi-touch}

 Layout = {Normal PC, TouchSmart PC, Digital Table}

Variability between Vertical & Horizontal Displays

To migrate eHome from a vertical surface to a

horizontal one, we initially deployed eHome on a

horizontal display without any modification to

understand the differences. After a number of usability

observations, and going back and forth between the

vertical and horizontal settings, we realized a raft of

issues. Table 2 lists these issues and their implications

on the migration process. In this paper, we do not argue

that these implications improved usability as this is yet

to be appraised. The point, however, is that usability

issues introduced new sources of variability. We

realized new variability occurring at the same two

layers of the architecture. Not only did we have to go

back and modify the variability we had previously

defined in the Input Manager, but we also needed to

explicate more variability in the Presentation layer. All

the other layers were left intact.

Table 2 – Issues leading to variability between vertical and horizontal displays

Issue Implication

Horizontal displays are, typically, physically larger than

vertical ones.

A new scaling adjustment factor is defined for UI objects to make

them bigger, and hence easier to interact with, on larger displays.

Horizontal displays deal with multiple concurrent touch

points not only single touch points or mouse clicks.

This new input mechanism needs to be incorporated into the

Input Manager layer as a new variant.

Conventional GUI elements like buttons, menus and tabs

were oriented in a top-down fashion, which for a

horizontal surface did not seem natural because people

sit on different sides of the table.

The conventional GUI elements were replaced by panels

available on each of the four sides of the tabletop, in Figure 4.

Instead of one Exit button on the top left corner of the screen, an

Exit button was added on each corner of the tabletop.

The “change mode” button (user/designer) was removed. Instead,

the change of mode on the digital tabletop happens automatically.

Feedback to the user was provided using a status bar at

the bottom of the screen, which was not suitable for a

multi-oriented surface (i.e. horizontal display).

Alternative ways to provide feedback were used. For example,

when a certain operation executes successfully, the corresponding

icon on the surface glows.

When using a slider control, vertical and horizontal

sliders seemed counterintuitive if there were people

sitting around the table (e.g. moving a vertical slider up

means a person on the other end sees it moving down).

A circular slider was used with clearly flagged ON/OFF

positions, as shown in Figure 5. Regardless of where you sit

around the table, if the handle of the slider is moving towards the

ON button, then the intensity is increasing and vice versa.

Some features were not readily easy to use for everybody

around the table because the UI controls were closer to a

certain part of the screen.

For deleting an object, instead of a single trash can on the bottom

right corner of the screen, the user has the option to drag it to any

of the trash cans distributed on the corners of the screen.

Readability of text on the horizontal display was limited

because of the presumed top-down orientation.

The horizontal interface includes far less text than the vertical

one. Descriptive icons and UI controls, animations, as well as

visual cues like pulsation or glowing are used to replace text.

Horizontal displays with multi-touch capabilities

provided new interactions not possible on PC displays.

On horizontal displays, it was made possible to zoom in and out

of the floor plan using two finger touches.

On a big scale tabletop, drag-and-drop became difficult

due to the physical limitations on the reach of an arm.

Gestures were made available as additional (not substitutional)

ways of executing certain tasks. (e.g. scratch-out to delete object)

Figure 4 – eHome on a horizontal display has redundant

GUI elements to support multiple orientations.

Figure 5 – Circular slider to control light intensity

Variability within Horizontal Displays

In this section we will discuss variability among

different horizontal displays. By horizontal displays,

we namely refer to three hardware platforms: SMART

DViT Table, SMART Table, and Microsoft Surface.

We dealt with three different SDKs, two of which were

different versions from the same vendor.

The first tabletop eHome was deployed on was the

SMART DViT table. We utilized the dual-touch

capability of this table by adding a feature that allowed

the user to place two touch points on the floor plan in

order to zoom in and out. This kind of interaction

required the hardware platform to support at least two

simultaneous touches.

A specialized controller was introduced in the UI

Controller layer to manage all communication between

eHome and the touch handlers in the SMART SDK, as

shown in Figure 6 – A. By this separation, it was easier

to plug this feature in and out. The new controller was

responsible for managing three events, namely:

TouchDown, TouchUp and TouchMove. In case the

touch events were part of a zooming interaction, the

specialized controller will handle the zooming.

Otherwise, the touch events were rerouted to mouse

events we had previously defined in the UI Controller

for the previous platforms in order to maximize code

reuse and avoid code redundancy.

The second step was deploying eHome on a SMART

Table which uses FTIR technology that supports forty

concurrent touches. A new specialized hardware

controller was also created to manage communication

between eHome and the touch handlers in the new

SMART SDK. At this stage, we had two different

controllers one for each table. These controllers,

however, shared common aspects such as the main

triggering events and the zooming interaction. These

common aspects were abstracted in a new layer we

called “Multi-Touch Library” as shown in Figure 6 –

B. The new layer was abstracted in a way so that it was

completely agnostic to the target hardware platform –

all specificities were kept in the specialized controllers.

Later, this abstraction served well in accommodating

the new digital tabletop – Microsoft Surface. That is, it

only took about one day worth of work to deploy

eHome on the MS Surface, because all we needed to

do was create a new specialized controller to

communicate with the Surface SDK, while all other

aspects were managed by the Multi-Touch Library.

Figure 6 – C shows the final organization.

Figure 6 – Handling variability due to SDK differences

As was done before, variability was evolved to include

a new layer, namely the UI Controller layer. This

variation point was added to the variability profile:

Multi-Touch SDK = {SMART DViT Table, New SMART

Table, MS Surface}

IMPLICATIONS FOR PRACTITIONERS

In this section, we discuss the practical implications of

our approach, and outline some of the lessons learnt.

Whether the intent is to migrate an existing application

from a normal PC to a touch-enabled device or from a

vertical display to a horizontal display, one should be

able to accommodate the different requirements and

capabilities of the increasing number of hardware

platforms in the market. There are two alternatives to

deal with this variety. One is to branch different

versions of the application and maintain them

separately. However, differences in the display

orientation or in the hosting hardware platform occur at

specific layers in the architecture and can be managed

in a more effective way. This leads us to the second

alternative which is embracing this variability in a

single product, and then instantiate products as needed

following the approach suggested in this paper.

To generalize this approach to other systems, one

should consider a raft of issues, namely:

Reuse code and other artifacts. In the case of eHome,

about 60% of the code (production and testing) is

reused amongst all platforms. This figure could even be

higher for systems that have a thinner presentation

layer than the one in eHome. Maximizing reuse is

desirable because it lessens the time and effort to

produce new products and maintain existing ones. For

instance, if the underlying technology for a certain

feature (e.g. item tracking) changes, we need to make

the proper modification in the common platform only

once. If a vendor produced a new digital tabletop, all

the work we need to do is at the UI Controller layer.

The common platform can be used without changes.

Realize the power of combinations. One more

advantage of the systematic treatment of variability is

the ability to combine different variants to come up

with diverse products. For example, suppose we want

to support the new HP TouchSmart PC that enables

two simultaneous touches. We can come up with a new

combination of variants to add the zooming behavior.

Minimize speculation. Do it bottom-up. When

developing applications for digital tabletops, we are

dealing with a new and fast-changing technology,

which makes the risk of wrong predictions very high.

Therefore, instead of investing much time in domain

analysis & design upfront, one can dedicate initial

efforts on actual development of single products. Here,

we distinguish two cases:

Case 1. If the new platform to be supported is the first

tabletop platform (i.e. migration from vertical to

horizontal), then some refactoring will likely be

necessary to make a clear separation between what

could and could not be migrated. In our case, we could

migrate everything but parts of the UI. It is advisable to

maximize reuse even in the UI layers. Nevertheless,

when migrating to a horizontal display, many of the

usability assumptions need to be revisited, which

requires a different mindset in the development process

that makes it alright to redo things for the sake of better

usability rather than reuse existing UIs.

Case 2. If the new platform is another digital tabletop

platform, then minimum work should be done on the

UI side. More work, however, is needed to abstract

common behaviors, interactions, and scaling issues as

needed. This iterative abstraction will make it easier to

support new platforms in the future. Sometimes, our

increased knowledge of what stumbling blocks to

expect, and the learning we gained when building

previous applications make it more tempting to build a

new application for the new platform. However, the

disadvantage of doing so is that then we will need to

maintain a different base code for each application

which is not practical or/and economical.

In both cases, a safety net of regression tests should be

provided to observe the effects of refactoring and

abstraction. In our case, eHome had an automated

testing coverage as high as 90% of the model code and

a suite of UI regression tests to be conducted manually.

CONCLUSION

Highly interactive technologies such as digital

tabletops are imposing new standards of user interface

design and interaction techniques. They also come with

new technical constraints that make adapting existing

software systems a challenging process.

This paper contributes a thorough analysis of the

technical and usability issues that need to be

considered when migrating systems to different

technologies. We show that an iterative bottom-up

adaptive approach is possible. The sources of

variability were found to be mainly due to technical

limitations arising from the different technologies

behind the displays, and usability issues mainly due to

the migration from vertical to horizontal displays. We

believe this analysis is of significant interest to

practitioners who deal with new interaction systems

and migration issues.

Currently we are working on introducing a new test-

based configuration layer to enable semi-auto-

generation of products based on test scenarios.

REFERENCES

1. Al Mahmud, A., Mubin, O., Renny Octavia, J.,

Shahid, S., LeeChin Yeo, Markopoulos, P.,

Martens, J.-B., Aliakseyeu, D., "Affective Tabletop

Game: A New Gaming Experience for Children,"

2nd Annual IEEE International Workshop

on Horizontal Interactive Human-Computer

Systems, TABLETOP 2007, pp. 44-51.

2. Besacier, G. and Vernier, F. Toward user interface

virtualization: legacy applications and innovative

interaction systems. Proceedings of the 1st ACM

SIGCHI Symposium on Engineering interactive

Computing Systems, Pittsburgh, 2009, pp.157-166.

3. DViT Technology, available at:

http://smarttech.com/DViT, last accessed June 18,

2009.

4. Gallardo, D.; Julia, C.F.; Jorda, S., "TurTan: A

tangible programming language for creative

exploration," 3rd IEEE International Workshop on

Horizontal Interactive Human Computer Systems,

TABLETOP 2008, pp.89-92.

5. Hao Jiang; Wigdor, D.; Forlines, C.; Chia Shen,

"System design for the WeSpace: Linking personal

devices to a table-centered multi-user, multi-surface

environment," 3rd IEEE International Workshop on

Horizontal Interactive Human Computer Systems,

TABLETOP 2008, pp.97-104.

6. HP TouchSmart IQ770 PC datasheet, available at:

http://www.hp.com/hpinfo/newsroom/press_kits/20

07/ces/ds_pc_touchsmart.pdf, last accessed June

18, 2009.

7. Mansor, E.I.; De Angeli, A.; De Bruijn, O., "Little

fingers on the tabletop: A usability evaluation in the

kindergarten," 3rd IEEE International Workshop

on Horizontal Interactive Human Computer

Systems, TABLETOP 2008, pp.93-96.

8. Microsoft Surface datasheet, available at:

www.microsoft.com/surface, last accessed June 12,

2009.

9. Parente, P. and Clippingdale, B. Linux screen

reader: extensible assistive technology. Proceedings

of the 8th international ACM SIGACCESS

Conference on Computers and Accessibility,

Portland, 2006, pp. 261-262.

10. Rick, J.; Rogers, Y., "From DigiQuilt to DigiTile:

Adapting educational technology to a multi-touch

table," 3rd IEEE International Workshop on

Horizontal Interactive Human Computer Systems,

TABLETOP 2008, pp.73-80.

11. SMART Table datasheet, available at:

www2.smarttech.com/st/en-

US/Products/SMART+Table, last accessed June 12,

2009.

12. Vandoren, P.; Van Laerhoven, T.; Claesen, L.;

Taelman, J.; Raymaekers, C.; Van Reeth, F.,

"IntuPaint: Bridging the gap between physical and

digital painting," 3rd IEEE International Workshop

on Horizontal Interactive Human Computer

Systems, TABLETOP 2008, pp.65-72.

13. Wang, X.; Ghanam, Y.; Maurer, F, “From Desktop

to Tabletop: Migrating the User Interface of Agile

Planner,” Engineering Interactive Systems 2008 -

The 2nd Conference on Human Centered Software

Engineering, pp. 263-267.

