

A Usable API for Multi-Surface
Systems

Abstract

A multi-surface system brings together into a single

application a wide variety of different devices.

Interactions for these systems must be designed to

span across all these devices – which could include

tabletops, large format displays and mobile phones.

This integration allows users to take advantage of the

unique capabilities of each device in ways that would

not be possible using those devices separately.

However, creating usable interactions for moving

content and control between such devices has proven a

difficult problem. Gestural interactions, especially those

informed by the spatial layout of the room as well as

the people and devices in it, might provide a solution to

this problem. But such systems are difficult and tedious

to build and represent too large an investment of time

and effort for developers to bear. To decrease the cost

of developing such systems, we have created an API –

called MSE-API – that allows developers to quickly and

efficiently add gestural interactions to multi-surface

applications. In this work we present the API, its uses

cases and its structure.

Author Keywords

Multi-surface system, API Design, API Usability,

Framework Copyright is held by the author/owner(s).

CHI’13, April 27 – May 2, 2013, Paris, France.

ACM 978-1-XXXX-XXXX-X/XX/XX.

Chris Burns

Dept. of Computer Science

University of Calgary

Calgary, AB Canada

chris.burns@ucalgary.ca

Teddy Seyed

Dept. of Computer Science

University of Calgary

Calgary, AB Canada

teddy.seyed@ucalgary.ca

Theodore D. Hellmann

Dept. of Computer Science

University of Calgary

Calgary, AB Canada

tdhellma@ucalgary.ca

Mario Costa Sousa

Dept. of Computer Science

University of Calgary

Calgary, AB Canada

smcosta@ucalgary.ca

Frank Maurer

Dept. of Computer Science

University of Calgary

Calgary, AB Canada

frank.maurer@ucalgary.ca

ACM Classification Keywords

Design, Human Factors

Introduction

A multi-surface system allows developers to take

advantage of the unique interaction capabilities of

many different devices while still operating within a

single distributed application. For example, a large

digital tabletop provides a public work area in which

users can work together to solve a problem while a

tablet provides a workspace in which a single user can

work privately from the rest of the group. In a multi-

surface system, both of these interaction modes can be

made available within the context of a single

application. But in order for such a system to be

usable, it must be straightforward for users to move

content and control between various devices.

We propose that this problem can be solved by a multi-

surface system where information transfer and control

is informed by the spatial layout of the system itself.

That is, by using the location and orientation of the

devices in the environment where the system is in

operation. Suppose a user wishes to transfer an image

within a multi-surface system which contains a

tabletop, a large format display and several others

tablets held by other users. In our proposed system, a

user would simply point their device towards their

intended recipient and perform a flick gesture. The

system will transfer the image to the device or devices

in the user’s field of view.

To support cross device interactions a spatial

information a tracking system is necessary. Likewise, to

support inter-device communication between devices

robustly, a networking or message-passing framework

must also be used. This means that the development of

multi-surface systems requires specialized knowledge in

a variety of fields. It would be possible to reduce this

burden, however, with an API which provided each of

these services for developers.

Building on our previous work in defining gestural

interactions for multi-surface systems, we present an

API for building multi-surface systems [1]. This API –

MSE-API – handles several use cases critical to building

multi-surface systems, including position and

orientation tracking of people and devices in the room,

data fusion, device discovery, and inter-device

communication.

This paper presents MSE-API, gives a description its

supported use cases and outlines its structure. We also

propose future work for further development and

evaluation-

Related Work

A core technical problem when building a multi-surface

system is how to divide control and move content

between component devices. Creating usable

interactions for these tasks has been a major goal in

multi-surface and multi-display research area for over

two decades.

A novel solution to this problem involves the use of

gestural interactions. To date, research in this area can

be divided into: gestures performed with devices;

gestures performed on devices; and gestures

performed in physical space. The gestures proposed in

this research tend to mimic physical interactions found

in the real world, such as flicking and throwing to

transfer content or pointing to make a selection.

Gestural Interactions

By tracking the movement of a device we can

implement gestures which are performed with a device.

Some of these gestures, for example a throw (See

Figure 1), has been proposed to trigger content transfer

[2, 3]. In our system these can be used as triggering

actions but are augmented with a complete view of the

spatial layout of the room so they can be used to both

select the target device and initiate transferring of

content.

Some gestures can by performed by users moving their

hands and arms and these can also be used in a multi-

surface system (See Figure 2). Work by Voida et al.

proposed a grab and point gesture for selecting objects

in an augmented reality environment [4]. By tracking

the movement of a device rather than body positions

we can implement gestures which are performed with a

device. CodeSpace, an application created by Microsoft

Research, incorporates several of these gestures to

support information sharing during developer meetings

[5]. For example, a flick gesture is used to transfer task

information from a tablet device to a wall display (See

Figure 3).

Previous APIs

APIs have been proposed in the literature for

supporting specific aspects of building a multi-surface

system.

Proximity toolkit provides developers with proxemic

information, defined by the authors as position,

identity, movement and orientation of people within the

interaction space [6]. However, the framework is

intended for the larger scope of proxemic interactions

and is not focused on devices or multi-surface systems

specifically. As the goal of MSE-API is to support real

world applications, some of the constraints of Proximity

Toolkit become major difficulties. Proximity toolkit

works mainly with the highly expensive Vicon1 tracking

systems, which cost upwards of one-hundred thousand

dollars. To be useful in real world situations MSE-API

supports the Kinect which is available at consumer level

prices. Both the Vicon system and the OptiTrack2

system require markers to be attached to users and

devices. Such markers would be inconvenient in real

work applications.

The 3MF framework exposes features typically found in

many devices in a multi-surface system (e.g.

gyroscopes or accelerometers) through a common

interface [7]. It also allows logical commands to be

passed to different devices within the system. This

framework has a relatively low level focus and does not

concern itself with proximity or spatially augmented

multi-surface system. It therefore doesn’t provide

spatial or location information.

Use Cases

MSE-API provides two distinct solutions for two types of

use cases within a multi-surface system: spatial query

tasks and device communication tasks. These allow

developers to build multi-surface systems where

gestural interactions are used to move content and

control around the different devices in the system.

Spatial Queries

In MSE-API, position data (collected using a Microsoft

Kinect) and orientation data (collected from individual

1 http://www.vicon.com/products/

2 http://www.naturalpoint.com/optitrack/

Figure 1. Gesture “with” a

device.

Figure 2. Gesture “without”

a device.

Figure 3. Gesture “on” a

device.

mobile devices) is centralized into a single server called

the Locator. We provide convenience methods that

allow developers to query the Locator based on two

spatial properties: proximity and field of view.

Proximity queries allow developers to determine which

devices are located within a given distance of the

calling device. This functionality can be used in a

variety of ways, including dispatching content to the

mobile devices of all users working within a given area.

Alternatively, it could be used to determine if a user

was physically overlapping with another device – for

example, if a user was holding their device over a

digital tabletop. This functionality could be used to

support a flick and a pour gesture respectively.

MSE-API also supports queries based on the orientation

or field of view of a device. These queries can be used

to detect which devices in the system fall within the

field of view (as defined by the developer) of a given

device. Using the field of view of a device is useful for

situations where a user wishes to make a selection by

pointing or selecting with their device. For example,

consider a situation in which a user wishes to send a

picture to another device in a system. The user would

select the receiver of this content by orienting their

device towards their target; effectively allowing the API

to determine, out of many possibilities, which single

target device should receive the picture.

These queries represent common functionality that is

needed to implement many of the gestures that could

be useful in a multi-surface system [1]. We expect that

developers will use these queries to compose a wider

variety of gestures then we have yet to propose.

Device Communication

Once a gesture has been detected and the developer

has queried the Locator for the intended device,

messages must still be forwarded to the target device

to complete the interaction. In MSE-API, the message

passing framework is closely integrated with the rest of

the API. As this communication is achieved using

standard web techniques (HTTP messages and RESTful

APIs) it is possible for developers to quickly integrate

powerful message passing functionality directly into the

application.

Structure of API

MSE-API can be divided into two major components:

the Locator and the Client Libraries. The Locator

provides spatial information about devices and people

in the room. The Client Libraries provide necessary

information to the Locator and also make

communication between the devices more convenient

and straightforward. This is consistent with MSE-API’s

main design goal of “making easy things easy, and

complex things possible.”

Locator

The Locator maintains a complete model of the

positions of every device in the room, including

position-fixed devices (e.g. a tabletop or wall display)

and the positions of mobile devices (e.g. tablets and

mobile phones). While fixed devices can be positioned

manually when setting up the system, it is necessary to

track mobile devices as they move about the room.

Rather than track the devices themselves, MSE-API

tracks the positions of people in the room and pairs an

individual device with the person holding that device.

This pairing relationship is initialized when a user

performs a waving gesture where both the waving

motion of the device and the waving motion of the

person’s hand are detected. The position of the person,

which is easy to track using consumer hardware such

as the Kinect, can approximate the position of the

device. This relationship, however, is broken when a

user is occluded or leaves the tracked area of the room.

In addition to position, the Locator is also updated with

the orientation of the devices in the system. This

information is captured by using the gyroscope

provided by most mobile devices. For the purposes of

selection and targeting actions, this orientation is used

as proxy value for the orientation of the person.

The API currently uses a Kinect to provide tracking

information about users in the room, but, since tracking

information is exposed via a REST service which can be

updated using HTTP requests, alternative hardware

such as the OptiTrack system3 or the Vicon tracking

system4 could be easily substituted.

Client Components

The Client Libraries are components of the API that

developers can integrate into applications

running on the various devices in a multi-surface

system (e.g. a C# application running on a Microsoft

Surface or an Objective-C application running on an

iPad). These provide two major pieces of functionality:

integration with the Locator; and integration with other

devices.

3 http://www.naturalpoint.com/optitrack/

4 http://www.vicon.com/

The Client Libraries provide all the required information

to the locator without development effort for those

using the API. This includes updating the pairing state

of the device and detecting the wave gesture which a

user performs to start using the system. The Client

Library also captures orientation information from the

device and provides this information to the Locator.

Lastly, it provides a set of convenience methods for

querying the Locator without writing networking code.

To support communication between devices in the

room, MSE-API provides several convenience methods

for sending data to other devices. This includes

common data types such as binary data, images, and

dictionaries. Likewise, developers can specify callback

methods for when they receive one of these data

types. For more advanced use cases, MSE-API

provides the ability to create HTTP routes and process

the results of HTTP requests. This functionality is

implemented using a networking and device discovery

framework called IntAirAct.5

Future Work

We plan to expand our research in two specific

directions: the further evaluation of MSE-API and its

further technical development. We are currently

conducting a longitudinal case study in which MSE-API

is being used as part of a different multi-surface system

currently under development.

We would also like to add additional interactions to

those currently supported by MSE-API and increase the

range of its tracked area by adding support for multiple

Kinect sensors.

5 http://arlol.github.com/intairact.html

Conclusion

Finding usable interactions for moving content and

control through a multi-surface system has been a

long-standing goal of multi-surface research. New

gestural interactions, which are based on physical

actions in the real world, such as a throw gestures to

transfer content or a point gesture to support selection

have been proposed by researchers. In this paper we

have presented MSE-API, which provides these

interactions for multi-surface systems. We describe the

major use cases and structure of the API and propose

future work for its evaluation and further development.

References

[1] A. Bragdon, R. DeLine, K. Hinckley and R. M. Morris
, "Code space: touch + air gesture hybrid

interactions for supporting developer meetings," in
Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS'11), Kobe,
Japan, 2011.

[2] R. Dachselt and R. Buchholz, "Natural throw and tilt
interaction between mobile phones and distant
displays," in CHI '09 Extended Abstracts on Human
Factors in Computing Systems, Boston, MA, USA,
2009.

[3] T. Döring, A. S. Shirazi and A. Schmidt, "Exploring
gesture-based interaction techniques in multi-

display environments with mobile phones and a
multi-touch table," in Proceedings of the
International Conference on Advanced Visual
Interfaces (AVI'10), Rome, Italy, 2010.

[4] B. Kaufmann, M. Gratzer and M. Hitz, "3MF – A
Service-Oriented Mobile Multimodal Interaction

Framework," in Proceedings of the Workshop on
infrastructure and design challenges of coupled
display visual interfaces (PPD'12), Capri, Italy,
2012.

[5] A. Bragdon, R. DeLine, K. Hinckley and R. M. Morris
, "Code space: touch + air gesture hybrid
interactions for supporting developer meetings," in
Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS'11), Kobe,
Japan, 2011.

[6] N. Marquardt, R. Diaz-Marino, S. Boring and S.
Greenberg, "The proximity toolkit: prototyping

proxemic interactions in ubiquitous computing
ecologies," in Proceedings of the 24th annual ACM
symposium on User interface software and
technology (UIST'11), Santa Barbara, California,
USA, 2011.

[7] T. Seyed, C. Burns, M. C. Sousa, F. Maurer and A.
Tang , "Eliciting usable gestures for multi-display
environments," in Proceedings of the 2012 ACM
international conference on Interactive tabletops
and surfaces (ITS'12), Cambridge, Massachusetts,
USA, 2012.

