UNIVERSITY OF CALGARY

A Domain-Specific Language for Multi-Touch Gestures

by

Shahedul Hug Khandkar

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
CALGARY, ALBERTA

December 2010

© Shahedul Huq Khandkar 2010

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies for acceptance, a thesis entitled " A Domain-Specific Language for Multi-Touch
Gestures™ submitted by Shahedul Hug Khandkar in partial fulfilment of the requirements

of the degree of Master of Science.

Supervisor, Dr. Frank Oliver Maurer, Department of
Computer Science

Dr. Saul Greenberg, Department of Computer Science

Dr. Richard Levy, Faculty of Environmental Design

Date

Abstract
Touch has become a common interface for human computer interaction. Portable hand
held devices like smart phones to tabletops, large displays and even devices that project
on arbitrary surfaces support touch interface. However, at the end, it is the applications
that bring meaning for these technologies to people. Incorporating a touch interface in
applications requires translating meaningful touches into system recognizable events.
This notion of meaningful touch(s) to interact with the system is called gesture. The
process of gesture recognition often involves complex implementations that are
sometimes hard to fine tune. Due to the lack of higher-level frameworks, developers
often end up writing code from scratch to implement touch interactions in their
application. Furthermore testing is essential to ensure quality of the application. The lack
of automated test frameworks forces developers to rely on manual testing which is time
consuming and open to human errors. To address these issues, we present a domain-
specific language that defines multi-touch interactions, thus hiding the complexities of
low-level implementation from application developers, along with an automated testing
framework for touch based interactions. The language allows a developer to focus on
designing touch interactions that are natural and meaningful to the context of their
application without worrying about implementation complexities; and the test framework

helps to detect errors earlier by running the test frequently in an automated fashion.

Acknowledgements

| would like to take this opportunity to thank everyone that helped and supported me to
complete the research during the two years.

First of all, many thanks to my supervisor, Dr. Maurer, for limitless support, advice and
help in pursuing this thesis. The freedom in choosing a research area and continuous
guidance in every stage of the research can hardly be imagined. | would also like to thank
Dr. Sillito and Dr. Greenberg for their support and guidance on projects that helped this
research in many ways.

Special thanks to Teddy Seyed and Andy Phan for their contribution in development and
testing of GestureToolkit. Also, let me express my gratitude towards all my friends in
Agile Software Engineering Lab and elsewhere, Ali Hosseini Khayat, Shafgat Ahmed,
Darren Andreychuk, Theodore Hellmann, Keynan Pratt, Mehrdad Nurolahzade and

Seyed Mehdi Nasehi. Thank you for your time and feedback in so many discussions.

Publications from this Thesis

Portions of the materials and ideas presented in this thesis may have appeared previously

in the following peer reviewed publications:

A Domain Specific Language to Define Gestures for Multi-Touch Applications.
Shahedul Hug Khandkar and Frank Maurer. In Proceedings of the 10th SPLASH
Workshop on Domain-Specific Modeling, Reno/Tahoe, Nevada, USA, 2010.

Tool Support for Testing Complex Multi-Touch Gestures. Shahedul Hugq
Khandkar, SM Sohan, Jonathon Sillito, Frank Maurer. In Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces,
Saarbrucken, Germany, 2010.

A Language to Define Multi-Touch Interactions. Shahedul Hug Khandkar and
Frank Maurer. In Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, Saarbrucken, Germany, 2010.

FitClipse: A Tool for Executable Acceptance Test Driven Development. Shahedul
Huq Khandkar, Yaser Ghanam, Shelly Park, Frank Maurer. In Proceedings of
10th International Conference on Agile Processes and eXtreme Programming (XP

2009), Pula, Italy, 2009.

Table of Contents

APPIOVAI PAGE.......eiiieeieee ettt r e I
ADSTTACT ... bbbttt ii
ACKNOWIEAGEMENTS ... bbb 1\
Publications from this ThESIS........cciiiiiii e %
TaADIE OF CONTENTS....cuviiiieiiei ettt et re e nre e enes Vi
LASE OF TADIES ...t bbbt IX
List of Figures and HIUSTratioNSooveiiiiiiieecie e X
List of Symbols, Abbreviations and NOmMeNnclature.............ccocveveiieiieie i Xii
CHAPTER ONE: INTRODUCTION ..ottt 1
1.1 Multi-Touch Application DeVelopmEeNt.........ccceiveviiiieiecie e 1
1.1.1 TOOIS t0 DEfiNe @ GESIUIE......ceeiveerieciie ettt reenne e 3

1.1.2 Consistent Visual FEEdDacKcccovviiiiiii e 3

1.1.3 Tool Support for DEDUGGINGccveiiiiiiiieieeser e 4

1.1.4 Collecting BUg REPOITSc..oiiiiecie et 4

1.1.5 DeVice INUEPENUENCE. ..ot 5

1.2 RESEAICN ODJECHIVES......iiviiiieeie ettt ettt ettt et e e ste e enes 5
1.3 DOCUMENT STFUCTUIE ...ttt ettt sttt e s 6
CHAPTER TWO: RELATED WORK ..ottt 7
2.1 APPIICALION FramMeWOTKS.ccieiiieiieiii ittt 7
2.1.1 Hardware iNdePENUENCEcceeivieieiieite ettt sres 7

2.1.2 GEeStUre RECOGNITIONvviiiiieieiee sttt 9

2.2 Tools for Development and Testing Touch Interactionscccccceevveveieeieciennnn, 11
2.2.1 DEVICE SIMUIALOISveevieieeiieie et ee e nree e e 12

2.2.2 TESETOOIS ..ottt 13
CHAPTER THREE: EXPLORATORY STUDYooiiiiiiiieieeee e 15
3.1 Review existing research in academia and iINAUSEIYccccoveveiieveeieceece e, 15
3.2 Study existing touch based appliCatioNScccooviiiiriiiiieee e, 17
321 SMAMUML ..ottt 18

3.2.2 AGHEPIANNET ... s 19

KT I 1] 1 o USSR 20

3.3 Exploratory user study on experienced multi-touch application developers........... 21
3.3.1 Data Collection and ANAIYSISccciveieiiieieeie e 22

BLBL2 FINGINGS .ttt bbb bbb 22
3.3.2.1 TeStiNg APPrOACH......c.eeiiiiecieee et 23

3.3.2.2 Limitations of the SIMUIator............cccocvvieiieie e 24

3.3.2.3 Testing Multi-USEr SCENAIIOSueiivieiieiiiie e e sie e see e 25

3.3.2.4 Bringing Code to the Tabletop.........ccooviiiiniiiiee e 25

3.4 Summary of EXplOratory StUAYcoeeiiieiiiie e 26
CHAPTER FOUR: THE GESTURE DEFINITION LANGUAGEcccoovviviieiene, 28
4.1 The ODJectiVes OF GDL.......ccooiiiiiiie e s 28
4.1.1 Separation Of CONCEIMS.ccuiiiieieieieie ettt 28

T = 5 1 13O 29

4.1.3 EXTENSIDIIITYoviieeiecie s 30
4.2 Implementation OFf GDL.........cooiiiiiiiiieieee e 30
4.2.1 Language DESIQNocueeiiieie ettt 30
4.2.1.1 Hiding Low Level Complexities.........cocviiririniicieieeeeeeeeeee 35
4.2.1.2 FIBXIDIITY ...ccueeiiee ettt 36
4.2.1.3 EXIENSIDIITY .ooviiieciieceee e 38

4.2.2 LaNQUAGE PAISENccuviiiiiiii ettt 42
4.2.3 Gesture Validation PrOCESS.......cocviieiieieiieesesie e 42
4.2.4 Integrated Development Environment (IDE)cccceoeiieveive v, 44
4.3 SUMIMATY ..ottt b bbbt bt et b e b e nreen s 47
CHAPTER FIVE: GESTURETOOLKIT ...oooiiiiieiese e 48
5.1 Hardware ADSLraCtion LAYETccooiiiiiiiiieieie s 49
5.2 GESIUIE PIOCESSONveiiiieiiee it ettt ettt sttt re e b s e e nneesnneenree s 51
5.3 C0re COMPONENT ...ttt n e nneas 52
5.3.1 Data QUEUE ...ttt e e s e e e et e e e s e ra e e e e e annrne s 52
5.3.2 Visual FEEUDACKccouviiieiiie e 53
5.3.2.1 ToUCh FEEUDACK ..ot 53

5.3.2.2 GeSture FERADACK.........ccviiiiieieiie e e 54

5.4 TOUCH RECOIUE ... ittt ettt 55
5.4.1 StOrage MOAUIE ..o 56
5.4.2 LOCAI CACNE ...oviiiiieiee e 57
5.4.3 REMOLE STOTAGEveevviiiieieeieee ettt 58
5.5 Automated TeSt FrameWOTKccoiiiiiiiiiieieie e 59
5.5.1 Asynchronous Test ENVIFONMENTcccoviiiiiiiiiiiceecee e 60
5.6 EVENT IMANAGETeiiiiiiie ittt ettt e et e e ssb e e st e e e baeeaneeeanseaeas 63
5.7 SUMIMAIY ...tttk et b et be e n e b 64
CHAPTER SIX: TECHNICAL CHALLENGES.........ccootiiiieieeeese s 65
6.1 Designing the LanQUAGEcccooveiiririeiiiiseeieie e 65
6.2 Hardware independence with device Specific SUPPOrt..........cccveveieeveeiiciiece e, 66
6.3 EXTENSIDIITY ..cveeiee s 67
6.4 Developer EXPECIAtIONSccveiiieieiie ittt sre s 68
6.4.1 ProducCtiVity TOOISc.ciiiiiiiiiieieee e 68
6.4.2 Implementation detailScccooveiiiii i 69
CHAPTER SEVEN: EVALUATIONcoiiiieee ettt 70
7.1 Data COMBCHION ...t 70
T2 FINAINGS ..ttt bbb bbbttt bbbt bttt 71
7.2.1 Findings from Task 1: Adding Resize Functionalityccccooviviviiiennnn, 71
7.2.2 Findings from Task 2: Record the Resize Touch Interaction.............cccccccu.... 72
7.2.3 Findings from Task 3: Writing Unit TeSt.........ccccevviiiiieiie i 72
7.2.4 Findings from Task 4: Define a New Gesture using GDLcc.ccoovvveiennn, 73
7.3 Summary of Preliminary Evaluationc.ccccoiiiiiiiie e 73
7.4 COMMUNITY RESPONSEveiiiiieiieieie sttt sr et 74

vii

CHAPTER EIGHT: CONCLUSIONooiiiiiiiiiciieiee s 75

8.1 ThesiS CONEIDULIONScveieiiiiiiieeee s 75
8.2 LEIMITATION. ...ttt ettt 76
8.3 FULUIE WOTK ...t 77
REFERENGCESottt ettt ettt e e e e beesnne s 78
APPENDIX A: LIST OF PREDEFINED GESTURES..........ccoii e 84
APPENDIX B: ETHICS APPROVAL ..ottt 87
APPENDIX C: CO-AUTHOR PERMISSION........ooiiiiiieiiiieeec e 92
APPENDIX D: ADDING NEW HARDWARE/DEVICE SUPPORTcccovvviieiiiennnnn. 98
APPENDIX E: DEVELOPING THE BUBBLESPATH TOUCH FEEDBACK 103

APPENDIX F: DEVELOPING THE HIGHLIGHTSELECTEDAREA GESTURE
FEEDBACK ..o 105

viii

List of Tables

Table 1: Gesture Support in Different Application Frameworks............ccccceoeniiininnnnns 15
Table 2: PartiCipants' EXPEIIENCE......ccviiuiiieieeeeiesteesieeee e sie e e e e ste e e e saeeeesseesseeneens 21
Table 3: Feature comparison between a Simulator and an Actual Tabletop 24
Table 4: Example of primitive CONAItIONSc.ccoveiieieiie e 32
Table 5: List of primitive conditions available in GestureToolKit.............cccocveviiinnnnnnns 32
Table 6: List of return types available in GestureToolKit...........c.ccccevveiiiieiiiiciicieee 34

List of Figures and Illustrations

Figure 1: Different types of multi-touch deViCes...........ccocviiiiniiiiiiiccee e 1
Figure 2: Implementing a feature in a multi-touch applicationc.cccoeveviviiciiieceeenn, 2
Figure 3: SmartUML - a free-hand sketch-enabled multi-user UML designer 18
Figure 4: AgilePlanner on a large horizontal displayccccccevviieiiievicie i, 19
Figure 5: eGrid - a collaborative application for utility companies...........cccccoenvrvnnne. 20
Figure 6: An example of a tabletop application testing workflow.............cccccevviiininnen. 23
Figure 7: The structure of a gesture definition............cccooeiiiiniiiiinice 31
Figure 8: the "Lasso" gesture to select multiple objects from a scattered view................ 35
Figure 9: Defining the 1asso gesture usSing GDLcccoceiiiiiininineeeese s 36
Figure 10: Sequence of touch strokes to create an "Actor"ccccvveveeveieece e 37
Figure 11: Defining Actor gesture for Use Case diagramccoceevevevenenenenenesennns 38

Figure 12: The code snippet of GDL grammar for “Touch Step” primitive condition 39

Figure 13: Code snippet for the TouchState primitive condition validator 39
Figure 14: A code snippet of the GDL grammar to parse the return types............cccuo..... 40
Figure 15: Data container class for SlopeChanged return typeccccceveveneneiennnnnn. 41
Figure 16: The code snippet of the SlopeChanged calculator class............c.cccceevveviernennen. 41
Figure 17: The workflow of gesture reCognitioncccooeiereniniieieeese s 43
Figure 18: The execution process of primitive types........ccccvvevveie v 43

Figure 19: Syntax highlighting and integrated compilation support for GDL in Visual

STUAIO .ttt 45
Figure 20: Extending GDL from Visual Studio..........cccooceiiiiiiniiiiieeeee e 46
Figure 21: On-the-fly error detection in IntelliPad IDEccccoviiiiiiii e, 47
Figure 22: Components of GestureToolKit Framework............ccooveriiniieiiincnciees 48
Figure 23: Changing device/input source of the applicationcccccoevveiiiiiie e, 50

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

Figure 36:

Example of @ Touch FEedDaCKccoiiiiiiiicicieeeee 53
Code snippet to add touch feedbacksccccevvvevviieiieiice e 54
The gesture feedback for the 1aSS0 geStUIe..........ccovviiiiiciiec e 54
GestureToolkit: Simulating multi-user touch interactions...............cccccevvennee 56
An XML code fragment representing a part of a touch interaction 57
Internal Structure of Storage Managercccccceevveieiieeiieeie e 58
Internal Design of REmMOte STOragecooveverieiiiiiiiieee e 58
Workflow of Automated Test Frameworkccccoovviinninnene e 60
Example unit test code using Touch TOOIKIt............ccccoiiriiiiiiiii 62
User defined gesture validation Codeccooveveiieiieii i 63
The code snippet to subscribe "Z0oom" gesturecccoevvreervnieseenesieseeeens 63
The simplified architecture of gesture ProCessorcccvvevveveeveeresiieseenns 64
The GestureToolkit Project website activity till October 2010.............c.c..... 74

Xi

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

GDL Gesture Definition Language

API Application Programming Interface
DSL Domain-Specific Language

IDE

Integrated Development Environment

xii

Chapter One: Introduction

Within the domain of human computer interaction, touch has been considered an
interaction approach for an extensive period of time. Until recently however, it was
limited to recognizing single touch interactions such as selecting options or entering
numbers in kiosk systems in banks, stores, etc.: Touch was basically treated as a mouse
replacement. However, recent innovations in multi-touch devices, have initiated new
opportunities for computer interaction that are fundamentally intuitive and natural. As
these devices become increasingly affordable, it is essential to create new applications
and extend existing ones to support touch-based interaction.

Comparatively, multi-touch is a newer interaction technique, where different types of
touches including multiple fingers, hands or arbitrary tangible objects, can be used to
interact with a system. While research to find the most suitable multi-touch hardware
technology is ongoing, a number of devices are available that use different approaches to

support this form of interaction.

Figure 1: Different types of multi-touch devices

1.1 Multi-Touch Application Development

To utilize this newer medium of input in applications, developers will require support
from proper frameworks and tools. Currently, application developers predominantly use

software development kits (SDK) provided by hardware vendors that are hardware

2
specific. These SDKs provide the necessary infrastructure to communicate between
hardware and software as well as to some extent touch enabled user interface widgets.
However, they lack in many areas that are necessary to build a reliable and robust
application within an acceptable time frame that are discussed in the following sub-
sections.

Figure 2 shows the steps in the life cycle of implementing a feature in a multi-touch
application. Like most software development process, it starts at the design stage. Once
the interaction approach is decided, the developers start implementing it. Then, different
types of automated and manual testing processes are used to validate the implementation

to ensure quality of the software.

eUser Interface Develop eDevice

eTouch Interactions eUser Interface compatibility -
(Gestures) eGesture detection

eGesture detection
e Automated tests

Figure 2: Implementing a feature in a multi-touch application

To understand the development process and requirements of gesture-based systems, we
studied existing touch based applications, research [22] [29] on gestures for multi-touch
surfaces and also interviewed experienced multi-touch application developers. The details
are explained in Chapter Three. From these exploratory studies and based on our own
experience, we found that developers are facing a number of challenges in developing

multi-touch applications which we discuss in the following sections:

2

1.1.1 Tools to Define a Gesture

Depending on the features of a multi-touch device, a command may be triggered by
strokes, touches, whole hand interactions, tangible object interactions or even multiple
concurrent touches from different people. In this research, we primarily focus on simple
as well as complex finger based touch interactions. Application developers sometimes
need to develop gesture recognizers to support new gestures that are natural and
meaningful to the application context. Processing the raw touch interaction data provided
by the hardware into meaningful application-recognizable events sometimes involves
complex algorithms that become cumbersome when fine tuning is required. It has been
found that application developers and touch interaction designers are not generally
domain experts in gesture recognition [31]. As gesture recognition often involves
platform-specific, complex algorithms, this can represent a significant amount of work.
As a result, developers often select gestures based on implementation complexity instead
of usability.

1.1.2 Consistent Visual Feedback

Visual feedback is an important part for any multi-touch application. A feedback is
generally provided in the form of visual effects on the touch screen in response to touch
or gesture. While touch feedbacks are used for general response to any arbitrary touch,
gesture feedbacks are more specific to application commands. As devices from different
vendors often provide these feedbacks in different way, it becomes a challenge for
application developers to maintain consistency in user interface across devices from

different vendors.

1.1.3 Tool Support for Debugging

Like any other software, multi-touch applications also need to be debugged to fix a
problem. However, for multi-touch applications the developers often need an actual
device to do the debugging. These devices are generally expensive and often a team of
multiple developers get one device to work with. Also, the physical design of the device
(e.g. horizontal tabletop) is sometimes not best for long term development work. As a
result, developers need to go back and forth between the device and their development
computer every time they need to test a piece of code. Tools to simulate touch
interactions on the development computer could reduce the need to move between
devices to a great extent. A simulator can also help to simulate multi-user scenarios and
therefore reduce the need to additional users to test concurrency issues.

1.1.4 Collecting Bug Reports

Sufficient technical detail is essential for fixing any software defect. For most multi-
touch applications, touch is the key interaction medium. The way a person uses finger
based gestures could depend on his/her background (e.g. style of the written form of their
first language, left or right handed). The best way to determine why a particular touch
was not recognized by the gesture recognizer is to run that same touch interaction through
the step by step debugging process. But due to the lack of necessary tools the developers
currently rely mostly on user comments which make the fixing process much difficult. A
tool to record the interaction as part of a bug report could greatly simplify the process of

fixing this sort of problems.

1.1.5 Device Independence

Multi-touch interactions [33] were initially developed in the early 1980’s. Since then a
number of different technologies have been introduced by different industrial and
research labs. Hardware vendors provide different multi-touch devices with similar
features that are driven by different technologies. Due to a lack of standards in the field,
these hardware vendors often end up implementing the device-to-software
communication systems differently. As a result, applications sometimes become so
dependent on a particular device that the developer needs to rewrite significant portions
of their application to make it compatible for another device. For example, an application
developed for the Microsoft Surface using their SDK, will not work on other devices like
a SMART Table.

1.2 Research Objectives

This thesis focuses on finding the challenges of developing multi-touch applications and
possible ways to reduce the complexities of development and testing touch based
applications. Two of the goals of this research are:
e Design a domain-specific language to simplify the process of defining new
gestures, and
e Develop a device independent application framework for multi-touch applications
that supports the gesture definition language and provides:
o consistent visual feedback across devices
o tools for debugging touch interactions

o framework for automated testing

6
To address the research goals, a gesture definition language (GDL) is designed as part of
this research which allows defining multi-touch gestures including multi-user and multi-
step scenarios. The details are described in Chapter four. A framework, GestureToolkit, is
developed to address the research goals for reducing a number of development challenges
and to implement the GDL.

1.3 Document Structure

The reminder of this document is structured in the following chapters:

Chapter Two: Related work - takes a detailed view at related fields of research and the
existing work within them.

Chapter Three: Exploratory Study - describes the study used to collect the requirements
including study of related research work, existing multi-touch applications and interviews
with experienced multi-touch application developers.

Chapter Four: The Gesture Definition Language - describes the design and structure of
the domain-specific language for defining gestures.

Chapter Five: GestureToolkit - gives an overview of the implementation details including
the language design and implementation of the features of GestureToolKit.

Chapter Six: Technical Challenges - discusses the technical challenges we encountered
throughout this research starting from design decisions to implementation choices and
adaption of tools to ensure future sustainability of the project.

Chapter Seven: Evaluation - describes the process and results of the user study on
GestureToolkit framework and the gesture definition language.

Chapter Eight: Conclusion - provides a summary of contribution, the limitations and

future plan for this research and the open-source project — GestureToolKit.

6

Chapter Two: Related work

Multi-touch is a technology where both the hardware and the software platform are still
evolving at a great pace. While the hardware support is essential, the right application is
also a driving factor to bring meaning for these devices to general people. In this chapter,
we describe the existing work on supporting tools and frameworks for multi-touch
applications. The related works are categorised into two sections: a) application
frameworks, and b) tools for development and testing. Application frameworks help to
reduce the development complexities by abstracting the low level implementation details
behind the high level application programming interfaces (API). While these frameworks
also help developers build applications faster by providing reusable components, tools
like device simulators can simplify the process of development and testing in many ways.

2.1 Application Frameworks

Frameworks are software libraries that provide reusable abstractions of code wrapped in a
well-defined Application programming interface (API). Our GestureToolkit is a
framework for multi-touch applications. It decouples the actual hardware from the
application by providing a hardware abstraction layer. This layer includes a hardware
agnostic interface for capturing multi-touch inputs. The framework also provides a
domain-specific language to define gestures. In this section, we compare our work with
existing work on hardware independence and gesture recognition systems.

2.1.1 Hardware independence

Multi-touch devices often require developers to write device specific implementations
because of the differences in underlying hardware and vendor specific software

development kits (SDKs). However, one possible way to achieve platform independence

8
is through abstracting the communication interface between the actual hardware and the
application. We need this hardware independence to reuse the same multi-touch
applications across different devices.

While the tabletop hardware vendors provide tool support for the development and
testing of tabletop applications specific to their device, they are not interoperable; as a
result the applications developed using these SDKs cannot be readily used on other
platforms. For example, Microsoft Surface provides an SDK for developers to simplify
the touch-related development complexities like managing concurrent touch points, touch
friendly widgets, components to detect special tags, and the like. Similarly, SMART
Technologies provides an SDK for their multi-touch devices. However, the widgets and
other features provided by these SDKs only work on their devices.

Echtler [8] provided an abstract architecture design and an implementation thereof to
improve the interoperability of multi-touch applications among various devices. It has an
interpretation layer that decouples the hardware specific inputs from the software
application code. Several other projects also provide tool support for abstracting multi-
touch interactions. For an example, PyMT [10] is a framework for rapid prototype
development of multi-touch applications. It provides consistent low level touch data to
the application widget layer from different touch devices. Pointer [11] also proposed a
hardware abstraction approach. Touchlib [9] is a library for capturing images and
processing data from frustrated total internal reflection (FTIR) based devices. It provides
basic events like finger down, finger up, and finger move.

In GestureToolkit, we have a similar approach as PyMT and Pointer in the device
abstraction part. The hardware abstraction layer provides an extensibility framework that

8

9
allows adding support for new devices. Applications developed on top of GestureToolkit
will run on these new devices without any change in the application code. GestureToolkit
also allows connecting multiple devices at the same time including virtual devices to
simulate touch interactions.

2.1.2 Gesture Recognition

The motion of meaningful touches to interact with the system is called a gesture. A
gesture may include touches of multiple fingers, hands and arbitrary tangible objects.
Recent versions of the widely used operating systems are providing native support for
touch based gestures. For an example, Microsoft Windows 7 supports Zoom, Pinch,
Rotate and some other gestures out of the box. Mac OS Snow Leopard also provides
gesture support to some extent. However, this operating system level support can only be
utilized if there is a device driver, which is not yet available for all touch enabled devices.
For an instance, to use the Windows 7 Touch API on Microsoft Surface one will need to
write a device driver, as it is not available yet. Also, developers need to handle operating
system specific differences for cross platform applications. SDKs for specialized multi-
touch devices like the Microsoft Surface SDK [39] provides gesture recognition for a
small set of gestures; however, the gestures are hardcoded into the system and are often
embedded inside widgets. Therefore, developers need to write recognition algorithms
from scratch to implement any new gesture.

The challenge of implementing gesture recognition system is a well-known problem in
the research community. Significant amount of research has already been done in the area
and also researchers are actively working on improving gesture recognition systems. We

discuss them in the following sections.

10
Wobbrock [12] proposed a gesture recognition system that recognizes gestures by
comparing them with base templates. An advantage of this approach is that it allows the
definition of new gestures by adding additional templates. This approach, however, has a
number of limitations. For example, it cannot detect gestures in a continuous motion
stream and only gestures with explicit start and end points can be processed. Also, it
cannot recognize gestures that are based on rules on touch movements instead of fixed
touch patterns (e.g. rectangle or circular shaped stroke) saved in templates.
Kartz [13] proposed another approach that relies solely on simple trigonometric and
geometric calculations. His approach requires considerably less training data than some
other recognizers. However, it suffers from limitations like smaller gesture vocabulary
size and it cannot process gestures with continuous motion.
The Hidden Markov Model (HMM) is a statistical model that is often used in sketch
recognition. Sezgin [14] proposed an HMM-based sketch recognition system that was
motivated by static and dynamic characteristics of sketches. Cao [15] also used a HMM
to present an evaluation of a hybrid gesture interface framework that combines online
adaptive gesture recognition with a command predictor. Anderson [16] proposed sketch-
based symbol recognition using a HMM, but false positives are an unavoidable aspect of
this approach.
Interaction designers are not generally domain experts in gesture recognition [42]. To
simplify the process, there are a number of frameworks and toolkits available for pattern
and gesture recognition, such as Weka [43] and GT2K [44]. While these are mostly
libraries of techniques, tools are also available for designing gestures such as MAGIC
[45] and quill [46]. MAGIC uses recorded data as samples and quill also uses recorded

10

11

data for training purpose. Although the recording feature greatly simplifies this for a set
of single touch gestures, multi-touch gesture are often based on certain gestural condition
(e.g. lasso gesture, five-finger-select and drag) that are not possible to define by sample
dataset.
To address the limitations of existing gesture recognition systems, GestureToolkit
provides a gesture definition language that includes multi-user, multi-touch and multi-
step gestures. This also allows the developers to easily test different steps of the gesture
recognition process and edit them as necessary.

2.2 Tools for Development and Testing Touch Interactions

The right set of tools is essential to ensure the quality of the software developed within a
reasonable amount of time. Unlike traditional software that runs on standard computers,
multi-touch applications are generally developed for special devices. However,
developers mostly use their desktop computers to develop these applications which
generally don’t have the touch capability. As a result, to test the application being
developed, they need to move between the development machine and the actual device
back and forth. Also, manually testing the features every time something has been
changed is both time consuming and resource intensive. Device simulators can provide
the option to test multi-touch applications from non-touch enabled systems to a great
extent and tools to automate the testing process can also help to ensure quality of the
software. We discuss the existing work on these related areas in the following sub-

sections.

11

12

2.2.1 Device Simulators

The Microsoft Surface SDK provides a record and playback tool that allows developers
to test their applications using recorded touch interactions. However, this tool can only be
used for applications that are built using the Microsoft Surface SDK as it only works
inside their simulator or on an actual Microsoft Surface device. Although the tool
provides a recording feature that helps the manual tests to some extent, it does not
provide any support for using those recordings in automated tests. Pointer [11] also
proposed a record and replay based automated testing approach.

DART [47] is a tool that uses the capture/replay concept to simplify the process of
working with augmented reality. It allows designers to specify complex relationships
between the physical and virtual world and allows designers to capture and replay
synchronized video and sensor data to work off-site and to test specific parts of their
experience more effectively. FauxPut [48] is another testing tool for interaction designers
that can wrap input device APIs and provide an interface for recording, simulating and
editing inputs for recognition based interactions. It also allows creating simulation of
sensor data along with other actual device data in parallel.

Mouse 2.0 [5] or toolkits like Multi-Mice [6] and Multi-Touch Vista [1] can add the
ability to use multiple pointers in regular computers to simulate touch points to some
extent. However, a problem with this approach is that you can only simulate two moving
touch points at a time through mice. Openinterface [56] also provides a similar
environment to work with simulated components from a component repository (e.g.

speech recognition, video "finger tracker").

12

13
GestureToolkit follows a similar approach with an extension that it allows developers to
debug and write automated tests of applications independent of the underlying hardware.
This also allows simulating multi-user scenarios using multiple recorded interactions and
helps to overcome the need of an actual device to a great extent.

2.2.2 Test tools

Although not directly applicable to tabletop applications, there is tool support available
for automated testing of traditional mouse and keyboard based user interfaces (Ul). For
example, CodedUI Test [49], Project White [50], Selenium [51] and QFTest [52] are used
to automate Ul testing of regular desktop and web applications. Some of these tools
follow a record and replay based test automation while others rely on a programmatic
approach only. Although these tools and most other Ul testing tools can automate the Ul
events from mouse and keyboard, we haven't seen a test automation tool that works for
touch inputs even though the underling operating system (i.e. Windows 7) natively
provides the support.

While large scale multi-touch devices are fairly new and still mostly used for research
purposes, smaller handheld multi-touch devices like smart phones and other portable
devices are quite common to general people. Froglogic [53] is working on Squish - an
automated graphical user interface (GUI) testing tool for different platforms including
Apple's iPhone and iPad to support the testing of Cocoa Touch [54] applications. Vimov
[55] provides another multi-touch testing tool for iPhone and iPad applications. It can
simulate device features through another device like using an iPhone as a multi-touch

controller for Apple's iPad simulator. Although these tools help the testing of handheld

13

14
multi-touch devices, we cannot use them for automated testing of large tabletop
interfaces.

However, GestureToolkit also has a virtual hardware simulator similar to Openinterface
to simulate actual device inputs for testing and debugging multi-touch applications. This
also provides a unique feature for continuous integration (CI) systems to run automated
test scripts to validate gesture detection without actually running the application on a

physical device or simulator.

14

15

Chapter Three: Exploratory Study

An exploratory study was conducted to assess the problem domain. This study consists of
three sections: 1) review existing research work in academia and industry, 2) study some
existing touch based applications to understand their requirements, and 3) conduct a
semi-structured open-ended interview with experienced multi-touch application
developers. These three sections are described in the subsequent sections. The result of
this study is used to set the requirements of GestureToolKit.

3.1 Review existing research in academia and industry

Research labs in universities and software industries are actively investigating possible
interaction techniques for multi-touch surfaces. To better understand the requirements of
multi-touch applications, we studied the results of C. North’s [22] and J. O. Webbrock’s
[29] research on multi-touch manipulation and user defined gestures for surface
computing. Then we compared the list of useful gestures with the supported gestures
from some of the popular multi-touch application frameworks like Windows Presentation
Foundation (WPF), Microsoft Surface SDK and GestureWorks — a multi-touch
framework for Flash based applications. Table 1 shows the summary of our findings.

Table 1: Gesture Support in Different Application Frameworks

Action Gesture Multi-touch application frameworks
WPF 4.0 Microsoft GestureWorks
Surface SDK
Select Tap * * *
Lasso

15

16

5-finger select

Tap and hold *
Rotate 2 finger rotate *
1 finger rotate
Move Drag *
Jump
Drag hand
Drag corner
One hand shove
Scroll Two finger
scroll
One finger *
scroll
Cut Slash
Duplicate Tap source and
destination
Delete Drag off screen *
accept Draw check
reject Draw ‘X’
Undo Scratch out *
Enlarge Pull apart with

hands

16

17

Pull apart with * * *
finger
Pinch * * *
Spray fingers

Open Double tap * * *

From the comparison, we found that many of the useful gestures are not support by the
frameworks out of the box. While some of these gestures may be useful for few specific
types of applications, but when application developers do need to recognize these
gestures they often either end up implementing them from scratch or choose to use other
alternative gestures and therefore compromise on application usability. In one of the case
studies (i.e. AgilePlanner), we have seen that the developer didn’t provide the gesture that
would be most meaningful and natural to the application context due to lack of gesture
recognition support from the framework. We discuss these case studies in the following
section.

3.2 Study existing touch based applications

We choose three touch based applications that use touch as a primary input system. In all
three cases, the predefined gestures that are available in Windows Presentation
Foundation were not sufficient. The developers had to implement gesture recognition
modules to support new gestures that are most appropriate to the application context.
These applications are: 1) SmartUML, 2) Agile Planner and 3) eGrid. The details of each

application are described in the following sections:

17

18

3.2.1 SmartUML

SmartUML [3] is a free-hand sketch-enabled multi-user UML Diagram designer. It offers
natural freehand drawing with pen interface and on-the-fly drawing detection. The tool

currently supports Use Case, Class Diagram and Activity Diagram.

L ENntte| Projectassarnti G ELaE B |_i h;] @
: Fle Edt Wiew Tools ‘Window Help e
DS E S % BB o | X &b
Toobox & X ' New use case diagram 4 p % Solution Explorer 2
P - ; = Untitled Project &l
Selection Mode PenDrawingmode | Left: Pointer Right: Pain ? £5 Use Case Disgram
A @ Mew use case diagr:
0 =4y Class Diagram
‘ {:} Mew class diagram |
t [=-{_3 Activity Diagram
Actor / | O Mews activity diagrar
g = £ Component Diagrarm
o ‘ - Deloyment Diagram
Use Case {3 State-Chart Diagram ||
- o [ST &
Actor Untitled Properties '
Connector Title
A
Includes
—&EH
) Activity
| Class
% UseCase =
2 a il ¥ @ Properties @ Collaboration
Ready. 300:320

Figure 3: SmartUML - a free-hand sketch-enabled multi-user UML designer

SmartUML is an open source project hosted at sourceforge.net. It uses custom gesture
recognition algorithms which includes detecting various geometric shapes and
intersections of multiple shapes in a certain logical sequence. After successful gesture
detection, the application layer requires the position, size and often the bounding box of

the gesture to place the appropriate object on the screen.

18

19
So, a gesture definition language that allows defining touch interactions that represents
different geometric shapes in a certain structure could have simplified the development
process to a great extent.

3.2.2 AgilePlanner

AgilePlanner [2] is a rich client based on the .NET/WPF framework that supports vertical
displays as well as digital tabletops. It supports synchronous distributed planning
meetings by providing a shared workspace for creating, organizing and editing electronic
index cards. Changes made by one team member become visible immediately on

connected clients all over the world.

Figure 4: AgilePlanner on a large horizontal display

While the developer used a custom gesture recognizer to detect straight lines, for the rest
of the touch interactions he chose to use the predefined gestures available in the Windows
Presentation Framework. As a result, the application did not provide the gestures that
would be most useful in some cases. For example, to move tasks (the red and yellow
rectangles) to a specific iteration (the large blue rectangle) a user has to drag one object at

a time. The user can at most drag two items in parallel as the device supports maximum

19

20
two concurrent touch points. However, with the ability to easily define new gestures, the
developer could incorporate the lasso gesture to select multiple tasks with one gesture
and move all selected tasks to the desired iteration using one more touch.

3.2.3 eGrid

eGrid is a collaborative application for utility companies to faciltate the collaboration of
control center team members in their daily tasks. In addition to application specific
gestures, another requirement of eGrid was to support multiple hardware platforms. The
first version of the application was developed using Microsoft Surface SDK. As a result,
it was too dependent on Microsoft Surface and it could not support other devices like
Dell XT tablets or the SMART tabletop which was also part of the requirement. Some
other differences between these devices include inconsistent visual feedback. For
example, Microsoft Surface provides different visual effects than Dell XT (Windows 7
based system) in response to touch input; and SMART tabletop leaves this for the

application and does not provide any visual feedback.

Figure 5: eGrid - a collaborative application for utility companies

20

21
The second version of eGrid is currently being developed and is using the GestureToolkit
framework; it now supports multiple devices including Microsoft Surface and Dell XT2
tablets. It also uses the GDL to define custom gestures (e.g. lasso).

3.3 Exploratory user study on experienced multi-touch application developers

We interviewed 3 participants who developed tabletop applications in a university lab
environment. All participants had prior software development experience and more than
one year of tabletop application development experience. The participants were from the
same lab where the toolkit was developed but they had not used the toolkit before this
study. We refer to those participants as P1, P2 and P3. Table 2 provides a summary of
their experience levels.

Table 2: Participants' Experience

Participant # of Tabletop Apps. Years of Tabletop Years of
Experience Development
Experience
P1 2 1 5
P2 3 2 8
P3 1 1 3

P1 developed GIS-based tabletop applications with an industry partner. P2 developed a
multi-player table-based game and P3 developed and maintained an existing collaborative
tabletop application. Both P1 and P2 developed software for the Microsoft Surface and

P3 developed software for SMART tables.

21

22

3.3.1 Data Collection and Analysis

Each participant was interviewed independently for 25 minutes. The interviews were
semi-structured and organized around three main topics. During the interviews each topic
was introduced using starter questions:

e Please tell me how you tested your application.

¢ s there anything that was difficult to test?

e How did you test multi-user scenarios?
Each interview was audio-recorded and transcribed for analysis. Our analysis involved
two stages. In the first stage we performed open coding on the transcribed data. Open
coding is an analytic process to identify concepts in the collected data [35]. In the second
stage of our analysis, we grouped the coding into five categories that capture the main
challenges our participants faced.

3.3.2 Findings

The following discussion of our findings is organized around the five categories that
emerged as we analyzed our study data.

Figure 6 shows the tabletop application testing workflow. This example workflow
demonstrates that the developers carry out their debugging at two different locations, i) at
their workstations using the simulator and ii) at the actual table (the shaded region in the
figure). This process is described by P1 in the following response:

“I usually used the simulator to test only the initial test to see how it looks like. Then |
had to move it to the actual hardware and then test it because the experience is much

different”.

22

23

Yes
Develop . erug on No | commit Code to Goto
| Simulator | Repository # Tabletop
i -
A 4
Debug on - Update Code
Tabletop - from Repo
No Fix on the
Tabletop
Testing on Actual i
Update Code Hardware Commit to
from € Repository
Repository

Figure 6: An example of a tabletop application testing workflow

This workflow indicates that the testing and debugging effort is increased when working
on tabletop applications because the developers need to move between their workstation
and the actual hardware and perform repetitive testing.

3.3.2.1 Testing Approach

Although all participants of this study used automated unit tests to automatically verify
their application logic, none of them used any automation for testing the tabletop
interfaces. In fact, none of the participants were even aware of any automated testing
tools. As a result they spent a considerable amount of time on manual regression testing,
which involves carrying out the same tests over and over again. This was particularly
time consuming for participant P3 who was developing an application for two different
tabletop devices with different physical sizes. So, P3 had to manually test on both tables

whenever there was a significant change in the application.

23

3.3.2.2 Limitations of the Simulator

24

Tabletop hardware vendors often ship device simulators. Although these simulators can

mimic the hardware on a standard PC to some extent, the developers still run into issues

as a result of differences between the simulator and the actual tabletop. For example, in

response to a question on the difference between testing alone at the workstation and with

multiple users at the tabletop hardware, participant P1 mentioned the following:

“.. if you are trying to create a new window, you can't do it more than once at the same

time because you have only two hands (two mice at the simulator). So if two people are

trying to test at the same time (on the actual hardware) maybe they will check

occurrences like doing this at exactly the same time.”

Table 3: Feature comparison between a Simulator and an Actual Tabletop

Feature Microsoft Surface Microsoft Surface
Simulator

of touches # of Mice 52+

Physical objects Limited Almost any shape

Sensitivity Mouse is very Precise (300- | fat-finger Finger is less
800 DPI) Precise

of Testers # of Mice More than one

Physical orientation Vertical Horizontal

Table 3 summarizes the key differences between these two environments (in this case the

Microsoft Surface Computer and the Microsoft Surface Simulator). From the above table

24

25
we see that the simulator supports a limited capability multi-touch and multi-user
environment compared to the target tabletop. As a result, a significant amount of testing
and debugging work needs to be carried out on the actual table, especially when complex
concurrent interactions need to be considered.

3.3.2.3 Testing Multi-User Scenarios

Multi-user scenarios typically involve a large number of possible concurrent interactions
by different users on the same interface. Manually testing such interfaces require multiple
users, which is an often difficult to find every time a feature needs to be tested.

For an example, P3 mentioned a multi-user scenario that he developed where multiple

users could vote by placing a tap gesture on a specific interface element. He prepared the

test plan to test for the following scenarios: 1) single user votes, 2) multiple users vote
sequentially and 3) multiple users vote concurrently. However, multi-user interactions
can go beyond a single interaction on a single element. In that situation, manual testing
becomes even harder as there is an explosion of possible states.

Multi-user scenarios often introduce unseen performance issues as well. P2 and P3
mentioned that at times they experienced severe performance degradation when multiple
users were concurrently using their systems. But a single developer or tester, when doing
manual testing can only explore a limited set of possible concurrent scenarios.

3.3.2.4 Bringing Code to the Tabletop

In most development teams that our participants worked in, digital tables are shared by
multiple developers. As a result, developers typically need to move code between their
PC and the shared tabletop so that they can test the features in the target environment.
Our study participants use source code repositories or USB memory sticks as

25

26
intermediate storage between the two environments. This process of going through an
intermediate medium slows down the familiar workflow of the develop-debug-develop
cycle. Also, it requires developers to commit untested code to the shared repository,
which often breaks a working build. As P1 mentioned:

(The process of transferring code to the table) is not comfortable because sometimes you
make some changes but you are not confident to commit it, as it's not a final change.
Participants P1 and P3 mentioned that developing on the tabletop with an additional
vertical display was faster as the outcome of the work could be loaded and debugged
immediately. To boost productivity, we recognize that it is important to provide
developers with tools so that they can get immediate feedback about their work-in-
progress code.

3.4 Summary of Exploratory Study

Based on the results of comparison between the list of useful gestures for multi-touch
surfaces [22] [29] and predefined gestures available in existing multi-touch SDKs, we see
that a significant number of gestures are not available out of the box. However, the
requirements of gestures also depend on the application context. As there is a wide range
of possibilities for multi-touch applications, it may not be practical for a framework to
provide every single gesture predefined out of the box. Instead, a domain-specific
language to define custom gestures is a more appropriate solution. Our study on several
multi-touch applications (section 3.2) also supports the fact that applications often need
gestures that are not available in existing SDKs. It also suggests that developers often
need to build applications for devices that provide similar feature but may come from

different vendors with minor variations. As a result, developers need an application

26

27
platform that would work across multiple devices and provide consistent visual
feedbacks.

The findings of semi-structured interview with experienced multi-touch application
developers show that tools for automated testing and simulating touch interactions
including multi-user scenarios could significantly simplify the development process.
Based on our own experience, we believe a tool to capture touch interactions and later

use them in debugging would also help developers fix application defects.

27

28

Chapter Four: The Gesture Definition Language

The results of the exploratory study shows that developers often need to define new
gestures that are not available in existing application frameworks out of the box. To
simplify the process of defining new gestures, we present the gesture definition language
(GDL) that hides low level implementation complexities from application developers
without compromising the flexibility of gesture definitions. The design of the language
focuses on the following four goals:

e Separation of concerns,

e Flexibility,

e Extensibility, and

e Independence from hardware.
GestureToolkit, the underling framework that compiles and executes the gesture
definitions defined using GDL, decouples the hardware specific issues from rest of the
system. The internal design and implementation details of GestureToolkit are described
in the next Chapter. We discuss the first three objectives of the language and how they
are implemented in the following sections.

4.1 The Objectives of GDL

GDL is a domain-specific language designed to streamline the process of defining
gestures. In this section, we describe the objectives of the gesture definition language as
mentioned above.

4.1.1 Separation of Concerns

Associating system commands with gestures is an important part of developing multi-

touch applications. At present, application developers not only write application specific

28

29
code but often also need to write the gesture recognition modules that recognize a gesture
from raw touch data. Gesture recognition is a complicated process that is often hard to
fine tune and requires special background knowledge. As a result, developers either
spend a significant amount of time to implement the correct gesture, or select a gesture
that is easy to implement. In essence, application developers make compromises on an
application’s usability.

A domain-specific language (DSL) for defining gestures can hide the low level
implementation complexities by encapsulating complex mathematical calculations,
pattern recognition algorithms and the like. This can help the developers focus on
designing the gesture at a higher level without worrying about the implementation details.

4.1.2 Flexibility

A specially designed DSL for gestures can help developers focus on application design
instead of low-level gesture complexities. However, it should also ensure that it provides
the necessary flexibility to define the gesture that is meaningful to the application
regardless of its complexity. The language should also allow gestures that may depend on
device specific features (i.e. user identification, pressure sensitivity). Another important
part of a gesture definition is to prepare the results when the gesture is detected. Some
gestures need only the touch position (i.e. tap), whereas others need more detailed
information like the boundary of an arbitrary shape drawn by the gesture (i.e. 1asso),
direction of the finger (i.e. one finger drag), etc. The language should provide options to

define new return types as necessary.

29

30

4.1.3 Extensibility

Researchers are actively working on finding the best technology for multi-touch
interaction. While existing technologies such as diffuse elimination, frustrated total
internal reflection (FTIR) and capacitive touch are widely becoming available to
consumers, new technologies continue to emerge in the research arena. For example,
“UnMousePad” [32], a flexible and inexpensive multi-touch input device that provides
data on touch pressure in addition to touch position. As new technologies are discovered,
the language should provide the infrastructure to add new features without affecting the
existing applications.

4.2 Implementation of GDL

The objective of the language is to provide a high level framework for application
developers to define new gestures that will hide the low level implementation details
without compromising the flexibility of gesture. The development process can be divided
into following four parts:

(1) design of the language,

(2) the language parser,

(3) execution process, and

(4) support for integrated development environment (IDE).
The subsequent sections describe each of these key parts in detail.

4.2.1 Language Design

Figure 7 shows the structure of a gesture definition in GDL. The gesture definition

contains three sections: a name that uniquely identifies a definition within the application;

30

31
one or more validate blocks that contain combination of primitive conditions; and finally

the return block that contains one or more return types.

name: <unigue identifier>

validate
[* code to detect a gesture *f

return
/= one or more return types =/

Figure 7: The structure of a gesture definition

The name must be unique within the scope of the application. GDL is part of
GestureToolkit that provides a set of commonly used gestures including zoom, drag,
rotate, lasso, flicks in different directions, geometric shapes, and so on out of the box.
The full list of predefined gestures available in GestureToolkit is listed in Appendix A. If
a developer wants to override any of the predefined gestures, they may use the same
name. The compiler will override the predefined gesture with their defined gesture.
However, if the user mistakenly defines two gestures with the same name, the compiler
will throw an exception message.

The validate block contains the logic for evaluating raw touch data to detect a gesture.
The logic is defined using a combination of primitive conditions, the smallest units to
evaluate raw data provided by the hardware abstraction layer.

Primitive conditions can be of different types. Table 4 shows some examples of primitive
conditions that can be used to define a pattern of touch points movement (No.1), the
range of touch points allowed in the specifying gesture (No.2), and a geometric condition
between two previously recognized partial results of a multi-step gesture (No.3). There

are currently 11 primitive conditions available out of the box. Table 5 shows a detailed

31

32
list all primitive conditions available in GestureToolkit. Developers can also create their
own primitive condition (which is described in section 4.2.2) and thereby extend the
GDL based on their requirements.

Table 4: Example of primitive conditions

No Primitive Condition

1 Distance between points: increasing

2 Touch limit: 1.4

3 linel perpendicularTo line2

Multiple primitive conditions are virtually connected like a chain using the logical
operators (i.e. and). The validation process follows a lazy evaluation approach where it
starts from the first primitive condition in the chain and it only passes the valid data set
(or multiple possible sets) to the next condition in the chain. This allows the system to
improve performance by realigning the elements of the virtual chain without breaking the
logic. When multiple validate blocks are defined, the compiler considers each block as a
step in a multi-step gesture and performs the validation in the order it is defined.

Table 5: List of primitive conditions available in GestureToolkit

Primitive Syntax Description

Conditions

Closed loop Closed loop Returns the set of touches that represents a
closed loop.

Not closed loop

Distance Distance between Returns the set of touches where the

32

33

between points

points: 1..10

distance between touch points are within

the specified range

Distance between
points: unchanged

10%

Returns the set of touches where the

distance between touch points are
unchanged to a give threshold. For
example, in this case 10% change in

distance is acceptable.

Distance between

points: increasing

Returns the set of touches where the change
of distance between touch points is
following a pattern. The possible patterns

are: increasing and decreasing.

Enclosed area

Enclosed area:
100..300

Returns the set of touches where the
enclosed area of the touch-paths is within
the specified range. The default unit is in

pixel.

On same object

On same object

Returns the set of touches that are on the

same object.

Touch area Touch area: Rect Returns the set of touches that are within
>0x50 the specified area. The default unit is in
pixel.
The shapes of the area can be of three types:
Rectangle (Rect), Circle or Ellipse
Touch path Touch path length: Returns the set of touches where the length
length 100. .200 of the touch path is within the limit. The

default unit is in pixel.

Touch shape

Touch shape: Line

Returns the set of touches that represents
the specified shape

It currently supports line, rectangle and
circle shape.

33

34

Touch step Touch step: 2 Returns the set of touches that occurred
touches within 1 sec ithin the specified time window. The
default unit is in pixel. The primitive
condition supports both second and

millisecond units.

Touch limit Touch limit: 1..4 Returns the set of touches within specified
limit. In case of more active touches, it will
return different combination of touch points

with the size specified.

Perpendicular L1 perpendicularTo Returns the set of touches if they intersect

L2

to perpendicularly.

The last section in a gesture definition is the return block. Users can specify any number
of return types. Each of the return type is linked to a return type calculator. The runtime
gesture validation engine passes the final set of valid touch data to each of the return type
calculators and finally sends the results to the application layer through a callback event.
The common return types including touch position, bounding box, direction, unique id
(when supported by hardware), rotation and many more are predefined out of the box.
Like primitive conditions, return types are also extensible. Table 6 shows the list of all
available return types in GestureToolkit out of the box.

Table 6: List of return types available in GestureToolkit

Return type Description

Bounding box Returns the smallest rectangle (aligned to the X and Y

axis) that can bound the selected touches

Distance changed Returns the amount of distance changed since last event

34

35

Info

Returns the message specified in definition

Slope changed

Returns the angle of slope changed (in degree)

Touch actions

Returns the last touch actions of selected touches

Touch Ids

Returns the unique identifies of the selected touches

Touch paths

Returns the paths (as an array of points) of the selected

touches

Touch points

Returns the last points of the selected touches

We now describe how GDL addresses some of the key issues of multi-touch application

development including defining new gestures and extending the language to support

additional features.

4.2.1.1 Hiding Low Level Complexities

Let’s consider a scenario where a user may use a lasso gesture (Figure 8) to select some

objects from a scattered collection of objects.

P

'\".
)

Figure 8: the ""Lasso™ gesture to select multiple objects from a scattered view

Implementing this gesture from scratch means processing the raw touch inputs that

mostly contain the position and order of touch points. Thus, the developer needs to write

code to check the following conditions at a very low level:

e s this the last action of current touch stroke? The gesture should be evaluated
when the touch stroke ends.

35

36

e Does the collection of points in the specific touch stoke represent a closed loop?
e s the area of the bounding box and the length of the path within a certain limit?

e Is the area of the arbitrary shape created by the enclosed path within a certain
limit?

e Only one touch should be involved in this gesture. If multiple active touch points
are available then it should consider each point individually.

Some of the validation logic like the calculation of the area of an arbitrary shape could
involve complex mathematical equations and requires proper testing. Figure 9 shows the
GDL code to detect the lasso gesture using the above logic. Implementing this from
scratch not only requires a lot of development time, but also additional time to test

various possible user scenarios.

name: Lasso

validate
Touch state: TouchUp
Touch limit: 1
Closed loop and
Touch path bounding bowx: 200x208..1888x1082 and
Touch path length: &88..168882 and
Enclosed area:5880..1082080

return
Touch points

Figure 9: Defining the lasso gesture using GDL

Also, the order of condition validation can significantly affect the overall performance of
the system. For example, it is quite simple to check the state of the touch action compared
to calculating the enclosed area of an arbitrary shape. The GDL compiler can internally
reorganize the order of condition validation, to improve performance.

4.2.1.2 Flexibility

Hiding low level implementation details can give the desired simplicity and improve

productivity of developer. However, it should also provide the necessary flexibility to

36

37
define gestures of various requirements. Let’s think about a scenario where a gesture may
be composed of touches in multiple steps. For example, in a UML designer tool (i.e.
Smart UML 78[3]) the user would do the following touches to create an “Actor” object.

©) ® Ols
{ 4

— [—

L/
/N
Figure 10: Sequence of touch strokes to create an ""Actor"™*

This means the developer not only needs to detect a gesture of certain characteristics, but
also keep track of history to use the results of partial validation for later use. These multi-
touch scenarios may involve multiple users and some of these partially validated results
could end up representing different gestures too.

To address this issue, GDL provides the syntax to define validation in multiple steps, as
well as the storage of partial results for later use. The preceding code snippet (Figure 11)
defines the actor gesture. The intermediate results of the first and second steps are stored
in variables defined using the “as” keyword. These variables can also store multiple

partial results if necessary.

37

38

name: Actor

validate as firstlLine
Touch state: TouchUp and

validate as secondLine
Touch state: TouchUp and

validate

firstline perpendicularTo secondlLine and

return
Position, Bounding box

Figure 11: Defining Actor gesture for Use Case diagram

4.2.1.3 Extensibility

Multi-touch devices are evolving at a great speed. Until just recently, devices were
mostly providing touch points and user identification for some specific devices [19]. Now
some devices can provide touch directions (e.g. Microsoft Surface) and information about
the pressure of a touch [21]. The extensibility framework of GDL allows creating new
primitive conditions as well as return types to extend the language with additional
recognition algorithms and device features.

The process of adding a new primitive condition can be described in two steps. First,
update the language grammar that is used to parse the code. Figure 12 shows a code
snippet of the grammar that is responsible for parsing the “TouchStep” primitive

condition.

38

39

£* Primitive condition: Touch Step */
syntax TouchStepRule
= "Touch step™ ":" x:ValidNum "touches" "within"

y:ValidNum z:TouchStepUnitsForTime
=» TouchStep{TouchCount=»x, TimelLimit=:y, Unit=xz};

token TouchStepUnitsForTime

= "sec” | "msec”;
Figure 12: The code snippet of GDL grammar for “Touch Step” primitive condition
Then, create a validator that takes raw touch data as input and does the validation. A class

implementing the IPrimitiveConditionVvalidator interface written in any .NET

supported language can contain the computation logics.

public class TouchStateValidator : IPrimitiveConditicnValidator
{ »a o
public void Init(IPrimitiveConditicnData ruleData)
1
_data = ruleData as TouchState;
if (_data != null)
foreach (string touchState in _data.S5tates)
_requiredTouchStates.Add(new TouchActionResult
1
Action = GetTouchActionType(touchState)
)
b

public ValidSetOfPointsCollection Validate(List<TouchPoint2» points)
1
var sets = new ValidSetOfPointsCollection();
if (IsValid({points))
sets.Add(new ValidSetOfTouchPoints(points));

return sets;

¥

private bocl IsValid(IList<TouchPoint2: pDintsj[::

Figure 13: Code snippet for the TouchState primitive condition validator

Figure 13 shows a code snippet for the TouchState. The Init() and Validate() are

the most important methods that need to be implemented for any new primitive type. The

39

40
gesture processor sends any parameters specified in the gesture definition to the Init
method when the class is instantiated at runtime. It is this methods responsibility to
persist the data for later use as necessary. Then the gesture processor sends the raw touch
data to the Validate method for processing and also captures the return values from this
method to pass the valid set of touch points to the next primitive condition as specified in
the gesture definition.

Similar to primitive conditions, the return types can also be added in the language. Figure
14 shows the GDL grammar that is responsible for parsing the return types from the
gesture definition. The highlighted area in the figure shows how the “Slope changed”

return type is defined in the grammar.

token ReturnTypes
= r: "Distance changed" =
| r: "Slope changed” => r

r: "Acceleration” =» r

»r

r: "Distance"” =» r
r: "Position" =» r
r: "Position changed” =» r
r: "Pressure” =» r
r: "Direction™ =» r

r: "Enclosed path” => r

r: "Touch points" => r

r: "TouchID" => r

r: "Info" ":" wv:ValidMame=>r+":"+v;

Figure 14: A code snippet of the GDL grammar to parse the return types

Each return type refers to two classes defined in framework. These classes can also be
defined in any of the .NET supported languages as long as they implement the required
interfaces. First, SlopeChanged is the class which carries the calculated values for the
return type. Client applications receive an instance of this class when the appropriate

gesture is invoked.

40

public class SlopeChanged : IReturnType

{ 2 aoa
/ <summary:
/ New slope wvalue in degree
J/ </ summary>
public double NewSlope { get; set; }
' <summary:
'// The amount of slope changed (in degr
Jf4 </ summary:
public deouble Delta { get; set; }
¥

41

ee)

Figure 15: Data container class for SlopeChanged return type

Next is the calculator class which is responsible for doing the calculation using the final

set of touch points. It stores the result into the data class as mentioned above and then

passes the data object to gesture processor. Figure 16 shows the calculator class for the

SlopeChanged return type.

using TCH = TrigonometricCalculaticonHelper;

public class SlopeChangedCalculator : IReturnTypeCalcul
1
public IReturnType Calculate(ValidSetOfTouchPoints
1
J/ Check if enough history data is awvailable
var len0fsl = set[®].5troke.StylusPoints.Count;
var len0f52 = set[1l].5troke.StylusPoints.Count;
if (lenOfsl > 1 && lenOfs2 > 1)
1
/! Calculate slope for last position
var prevslope = TCH.GetSlopeBetweenPolints(
set[@].5troke.5tylusPoints[len0fsl - 2]
set[1l].5troke.StylusPoints[len0fs2 - 2]
sc.Delta = sc.NewSlope - prevSlope;
¥
return scj
¥

ator

set)

¥
) * 188 / 3.14;

Figure 16: The code snippet of the SlopeChanged calculator class

41

42

4.2.2 Language Parser

The language parser uses an MGrammar [41] compiler to parse and build the abstract
syntax tree (AST) from the user-defined GDL. Developers can use it from the command
line or Visual Studio extension so that whenever the application is compiled, the
language parser will also run and compile the gesture definitions. If an error occurs, a
notification is provided via a console message.

The parser uses the API provided by Microsoft to parse and generate the AST from
gesture definitions using the syntax rules defined in the language grammar. Next, the
MGraphXamlIReader [34] library dynamically instantiates the .NET classes to build the
object model from AST nodes. Then, the object model is serialized in java script object
notation (JSON) format and saved into the application deployment directory as an
embedded resource so that the framework can directly load gesture definitions at runtime.
As this process uses the precompiled objects of gestures definitions, it saves the
compilation of gesture definitions during application initialization and improves the
application loading time.

4.2.3 Gesture Validation Process

Figure 17 shows a high level workflow of the gesture recognition process. When touch
data is received from the hardware layer, the toolkit evaluates the primitive conditions
defined in validate blocks of the registered gestures. The framework internally handles
the multi-user scenarios during result storage and evaluation of primitive conditions in
each block. This is because gestures may appear in parallel when multiple users interact
simultaneously. Once a gesture is recognized, the gesture processor calculates the

requested return values and notifies the application through the event controller.

42

43

v

Wait to receive
new data

Mo

Evaluate
Validate blocks

Passed

Is it the last Mo

/ A
| Save partial results | |

A

2

A/

Is alias defined

e Iidatjy
Yes

Motify application
layer

T

Calculate return
types

)

Figure 17: The workflow of gesture recognition

Touch b & c

Touch b & c

Toucha&c

3 touches (a3, by, €}

Touch 3 &b b all

—~| Touch limit: 2 }

’| On same object |

E1EP MEY

A validate block consists of one or more primitive conditions connected to each other like
a chain. The validation process follows the lazy evaluation approach where it starts from
the first primitive condition in the chain and it only passes the valid data set (or multiple
possible sets) to the next condition in the chain. This allows the system to improve

performance by realigning the elements of the virtual chain without breaking the logic.

"E o Return type
' Calculator

Figure 18: The execution process of primitive types

43

Figure 18 shows the execution process of primitive conditions in each validate block

where the process starts from the first primitive condition which receives the raw touch

44
data from provided by the framework. The primitive condition then processes the data
and passes only the valid set or sets of touch points to the next primitive condition. In the
above figure, the touch limit primitive condition receives the three active touch points.
Since its internal rule defines that the particular gesture requires two touch points, it
creates new datasets from the raw touch data which is three sets (touch pointb & c,a & ¢
and a & b) and passed to the next primitive condition. In the same way, the on same
object primitive condition found that only two of the three sets of data is valid according
to its rule. So, it passes only those two sets of touch points to the next one. Finally, the
last primitive condition will pass the final dataset to a gesture validator which will then
send the data for calculating return types.

When multiple validate blocks are defined, the compiler considers each block as a step in
a multi-step gesture and performs the validation in the order it is defined.

4.2.4 Integrated Development Environment (IDE)

The exploratory study and preliminary evolution shows that application developers
expected deep IDE integration for the gesture definition language including integrated
compilation, syntax highlighting and on-the-fly error tracking. To address these issues,
we developed extensions for Visual Studio 2010 to support integrated compilation and
syntax highlighting. We selected Visual Studio as it is the most popular IDE to

application developers for any .NET based development.

44

demo01 - Microsoft Visual Studi [FEREERS)
a0 de icros isual Studic - 3 - - =
File Edit View Project Build Debug Team Data Tools Architecture Test Apalyze Window Help
F1 il 5l | 83 A9 - O | B [Debug]| 8 [poth =@ k.

name: Drag2

validate
Touch state:
Teuch limit: 1..2

return

Qutput

Show output from: | Build '|| 3 | B —‘bl =_X| =]
binyDebug,
demo@l
Loading language grammar...
Building parser from language...
Building list of rule types...
Compiling gestures (*.g files) ...
1 gesture definitions found. Updating deployment folder...
Done.
‘]
B Error List B Output

7y
-l
]
o
m
3
m
B
| w
(=]
c
g
3
3
o
o
o
i
<
m
g
3
o
o
a

Ch20

Figure 19: Syntax highlighting and integrated compilation support for GDL in

Visual Studio

While writing new gesture definitions is one of the most frequent tasks related to multi-
touch application development, there are times when the current set of primitive
conditions and return types available in the framework is not sufficient to define the
gesture that is most meaningful to the application context. In such case, developers may
have to create additional primitive conditions and return types. Having this in mind, the
Visual Studio Extension for GestureToolkit provides the necessary infrastructure to add

additional primitive conditions & return types from the same Visual Studio project.

45

46

PrimitiveConditionSyntax.pd > TGl G LT EN] Solution Explorer

J* H 2| & =

PreCondition syntax

g 3 Solution 'Language Parser' (5 projects)
> E.E GestureDefinitionLanguage

*
*

* syntax MyNewPreCondition
* . E_E LanguageParser
*

= "MyNewPreCondition™

=> MyNewPreCondition{State=>"true"}; 4 05 LanguageParser.TestApp
#4 » [=d Properties
<3| References
syntax TouchLimit » [bin
= r:Fixedvalue => r 4 [Extensions

| riRange => 4 |7 Language Syntax
syntax Range f | PrimitiveConditions.pd

= "Touch limit™ ":™ x:ValidNum ".." y:ValidNum Gl PrImItIVECDr‘IdltanS}-’r‘ltax.ﬂK
=:TouchLimit{Type=>"Range”, Min=»x, Max=>y}; | | ReturnTypes.pd
4 | Primitive Conditions
syntax FixedValue 1] Rulel.cs
= "Touch limit™ ":™ x:validNum %] RulelValidator.cs
=>TouchLimit{Type=>"Fixed”, Min=>x}; . [Return Types

Figure 20: Extending GDL from Visual Studio

The Visual Studio Extension for GestureToolkit also provides project and item templates
to simplify the process even further. At present, templates are available for defining
gestures, primitive conditions, return types, automated tests. In addition to individual
item templates, the extension also includes project templates for Windows 7, Microsoft
Surface, SMART Tabletop, Silverlight and TUIO based applications.

While the extension in Visual Studio currently don’t support on-the-fly error tracking
(e.g. red squiggly lines), the same functionality is available when the IntelliPad [60] is
used.

IntelliPad is a free IDE from Microsoft and it supports syntax highlighting and on-the-fly
error tracking when MGrammar is used to parse the language. Figure 21 shows an

example of syntax error highlighted using red squiggly mark in the IntelliPad IDE.

46

47

#0 Fle Edit WVew DSL Help
untitled1*® 100% GDLmg Mode x

name: Zoom

validate
Touch state: TouchMove
Touch limit: 2
On same object

JJJJJJ

return
Distance changed

Figure 21: On-the-fly error detection in IntelliPad IDE

4.3 Summary

This chapter describes the design details of the gesture definition language (GDL). It also
explains the process of extending the gesture definition language and the related tools
that can be used to add additional primitive conditions and return types. Then, the internal
process of validating gesture definitions is explained. Finally, The extensions of popular
integrated developer environments (IDEs) that helps develops to write gesture definitions

like Visual Studio and IntelliPad are described with examples.

47

48

Chapter Five: GestureToolkit

In the exploratory study, four major challenges were addressed: device independence,
gesture definition support, device simulator and proper test framework. To address these
challenges, GestureToolkit — a multi-touch application framework was developed. In
addition to providing tools to compile and execute the gesture definition language
described in Chapter Four, GestureToolkit also aims to address the following
development and testing challenges:
1) a hardware abstraction layer that separates the application from the device
hardware,
2) tools to compile and execute the gesture definition language,
3) visual feedback framework for touch interactions,
4) device simulator that provides a number of features including a way to debug and
test touch interactions without an actual device, and
5) an automated test framework that allows to write automated regression test scripts

to validate gestures.

| Application | | Test Runner |
[[
Touch- ' :)
ouen Event Test Online
Toolkit _—
Controller Framework Storage
Gesture Touch
== Core e«
Processor Recorder

| Hardware Abstraction Layer

| M5 Surface | | TUIO | | | | Virtual Device

Figure 22: Components of GestureToolkit Framework

48

49
The component diagram of the GestureToolkit framework is shown in Figure 22. The six
key components of the toolkit are:
(1) the hardware abstraction layer which exposes a hardware agnostic API for the
application,
(2) the gesture processor that recognizes gestures from the raw touch data,
(3) the core that acts as a bridge among the components,
(4) the touch recorder that stores the raw data from the hardware abstraction layer,
(5) the test framework that executes the automated test scripts, and
(6) the event controller that keeps track of all gesture event requests from
applications.
We describe these key components in the subsequent sections.

5.1 Hardware Abstraction Layer

We followed a similar approach as Echtler [8] to decouple the actual hardware from the
application layer. This allows the gesture definition to be device independent. This
module provides a hardware agnostic interface for capturing multi-touch inputs. This
interface can be implemented for wide range of hardware platforms. GestureToolkit
currently has implementations for Microsoft Surface, SMART Tabletop, Windows 7
(WPF 4.0 and Silverlight 4.0), Anoto Pen and TUIO protocol. The framework also has an
implementation for a virtual device that can be used to simulate multi-touch inputs. The
virtual device can playback the recorded interactions and run automated tests.

Due to the nature of the software development kits (SDK) provided by the hardware
vendors to build multi-touch applications, the developed applications often become

tightly coupled with the SDK. The result is that significant portions of the application

49

50
need to be rewritten, to simply run it on another device with similar features. To
overcome this, the framework is designed to be independent of these SDKs and
applications developed using it, can easily be ported onto different devices without
changing any application source code. Figure 23 shows how we can change a device with
just one line of code. This can also be handled through configuration settings or

automatic hardware detection.

/* select hardware */
var provider = new Windows7TouchInputProvider()
=

)

ffvar provider = new SurfaceTouchInputProvide

/* Initialize Gesture Framework */
GestureFramework.Initialize(provider, ...);

Figure 23: Changing device/input source of the application

The system also allows for the changing of devices while the application is running. This
is useful for scenarios where additional external devices like the AnotoPen can be
connected at run time or to connect virtual devices that can simulate certain activities for
debugging, testing or demonstration.

The hardware abstraction layer receives low level touch data from touch input providers.
A provider is responsible for translating device inputs into a generic data format
supported by the framework. Each supported device has its own implementation of an
input provider which is developed by extending the base input provider class. The base
input provider provides easy access to reusable utility functions and common features
like data caching to simplify the development and maintenance. The additional code in
the device specific provider is mainly responsible for converting device specific data into

a generic data format that rest of the framework can process.

50

51
Depending on the hardware interface and drivers, devices can send touch input data in
various formats. For example, Microsoft Surface SDK provides an event model that
others can subscribe to receive touch inputs in an asynchronous fashion whereas other
devices (e.g. AnotoPen) uses TUIO protocol that sends data over network layer. Device
specific providers are responsible for converting these data into three events:
SingleTouchChange, MultiTouchChange and FrameChange as per the design
requirement of the GestureToolkit framework. Appendix D describes how to develop a
provider with a step by step code example.

5.2 Gesture Processor

The gesture processor has two key responsibilities. First, it is responsible for parsing the
gesture definitions, compile and embed the output files into application assemblies. Then
at runtime, it also processes the raw touch input data received from the core component
and validates the inputs using the logic defined in the compiled gesture definitions. On
successful detection of a gesture, it computes the results as expressed in the return block
of the gesture definition and finally, sends the results to the core component. The core
component is responsible for notifying the applications via the event controller.

As explained in Chapter Four, the rules and syntax of the gesture definition are defined
using the MGrammar [41] language definition tool. The gesture processor uses the parser
provided by the MGrammar to parse the code in a gesture definition file. Once the entire
abstract syntax tree (AST) is generated for the code, the gesture processor uses
MGraphXamlIReader library to instantiate objects of respective primitive conditions with
the values defined in the definition. Finally, the entire collection of primitive conditions

are serialized into java script object notation (JSON) format and stored in a text file so

51

52

that at runtime the application can directly get the collection of primitive conditions from
the serialized form.
At runtime, when the application code subscribes for a particular gesture for the first
time, the gesture processor instantiates the set of primitive conditions from the serialized
form. However, if the same gesture is subscribed multiple times, the framework reuses
the same instances. As a result, when input is received, the gesture processor only
evaluates the primitive conditions that are needed for active gestures.

5.3 Core Component

The core component acts as a bridge among the components. It is also responsible for
maintaining history to touch data and execute other general components including visual
effects. The touch history is managed by the Data Queue module and visual effects are
managed by the Visual Feedback module, both part of the core component.

5.3.1 Data Queue

The data queue maintains current state and recent history of raw touch data. It provides
touch-related information to rule validators in various forms, including recent touch
history, touch path, time stamps, and age of a touch. During system initialization, the
gesture processor notifies the data queue about the possible longest history of data that
could be requested by any active gesture. This information may change during runtime as
developers can dynamically add new gestures at any point in the application runtime. If a
new gesture event is registered, a message from the event controller via the gesture
processor will notify the data queue. The data queue deletes all touches from the history

that are outside of the time frame of interest.

52

53

5.3.2 Visual Feedback

Like any communication, feedback is important for multi-touch systems. While a system
can provide feedback to users via audio, visual or tactile medium, the visual feedback is
the most widely used in todays’ applications. GestureToolkit provides two types of visual
feedback:
1) touch feedback that provides visual feedback for any arbitrary touches,
and
2) gesture feedback which provides a visual feedback when the desired
gesture is detected.

5.3.2.1 Touch Feedback

While the framework provides a default feedback for touch interactions, it also allows the
developer to create their own custom feedback. The framework provides a plug-in
architecture that allows developers to use visual feedback from external sources as well

as share their own custom feedbacks with others.

Figure 24: Example of a Touch Feedback

Figure 24 shows a touch feedback named BubblesPath that comes out of the box with

GestureToolkit. The plug-in architecture simplifies the development of touch feedbacks

53

o4
to a great extent. For example, a specific touch feedback plugin only defines a single
instance of a touch point (e.g. one gray bubble in Figure 24) and how it will animate. The
framework internally handles implementation complexities like multiple instances for
long touch path as well as multiple touch points, background threading, frame rates for
performance and so on. Appendix E shows the implementation of BubblesPath touch
feedback.

The framework also simplifies the process of managing touch feedback within the
application by exposing public interfaces. Figure 25 shows a code snippet to add the

bubbles path touch effect.

//Add touch feedbacks
GestureFramework.AddTouchFeedback(typeof (BubblesPath));

Figure 25: Code snippet to add touch feedbacks

5.3.2.2 Gesture Feedback

Like touch feedback, application developers can also create their own gesture feedbacks
or use visual effects that come with the toolkit out of the box. While a touch feedback is
visible whenever a touch data is received, the gesture feedback is used to notify the user

when the specified gesture is recognized.

Figure 26: The gesture feedback for the lasso gesture

54

95
Figure 26 shows the HighlightSelectedArea gesture feedback that is used to inform
the user about the area selected the lasso gesture. The source code for this gesture
feedback with step by step explanation can be found in Appendix F.

5.4 Touch Recorder

To record interactions, the Touch Recorder subscribes to lower level input from the
hardware abstraction layer through the core component and saves the data into an online
storage and also caches it locally to improve performance. This allows automatic
synchronization of data between developer machines and actual devices.

During playback this module reconstructs the touch data object from the XML content
and sends the data to the system through a virtual device so that it appears to the rest of
the system as if it is coming from the actual device. This allows the developers to test
applications that require multi-touch interactions on their development machine. Figure
27 shows example of using the recorder module to individually record the lasso and zoom
gesture and later play them in parallel to test multi-user scenarios.

This touch recorder can also be used in applications to implement features like interactive
tutorials, touch data collection and the like. The touch recorder provides following API

methods which application developers can use:

Method Name Description

StartRecording() Starts recording all touch interaction data

StopRecording() Stops recording and returns the recorded data in xml form

StartPlayback(...) Starts playback of the recorded touch interactions. This
method has a number of overload methods including options

55

56

to play single set of data as well as multiple datasets by

merging them into one timeline.

5.4.1 Storage Module

The data is stored in an XML format (Figure 28). The recorder can record and store
interactions from any device that is supported by the hardware abstraction layer,
including basic touch information (i.e., coordinates, touch ID) and any additional device

specific data provided by the hardware.

Recording touch interactions
Recording touch for a zoom gesture
interactions for

a lasso gesture

=l

Touch MM\!‘TO“:'I Recorder
[Add New] Bxisting Gestures | shahedk Add New | Existing Gestures |

Project name: Project name:
|Dapp -

shahedk
Playing two

recorded
interactions in
parallel

Dapp

Gesture name:

T Gesture name:
|Zoom

| Lasso Flick

“o o [

Start Recording

Figure 27: GestureToolkit: Simulating multi-user touch interactions

56

S7

<FrameInfo>
<TimeStamp»>18926483</TimeStamp:
<Touches>
<TouchInfo>»
<ActionType»l</ActionTypes Basic
¢<Position> touch data
<X»A51.14< /%>
<¥>1B7.294/Y>
<fPosition>
<TouchDeviceld»>18</TouchDeviceld:

<Tags>» Device
<Tag> specific
<KeyrSize</Key:> touch data
<Valuerle</Value>
<fTag»
</Tags»

</TouchInfo»

</Touches»
</FrameInfo»

Figure 28: An XML code fragment representing a part of a touch interaction

Figure 28 shows an XML code fragment generated by the touch interaction recorder. The
recorder records both basic touch data that are common to all supported devices and also
the device specific data (e.g. touch size, touch direction) under the Tags node.

5.4.2 Local Cache

GestureToolkit supports both web based applications and regular desktop applications.
For web applications, it uses the Silverlight framework. A difference between the desktop
and the web platform is that web applications do not have access to local file systems
which is needed to maintain the cache data. To overcome this, the framework uses
isolated storage when running on web browsers and the file system for regular desktop
applications. However, this is internally handled by the storage manager and application
developers only need to code against the StorageManager class. Figure 29 shows the

internal structure of the StorageManager class.

57

58

Accessed by the end Storage
user (recorder module) Manager

Accessed by Storage Silverlight WPF (regular
Manager Storage .net) Storage
| |
1 1 1 1
Remote Desktop Remote

Figure 29: Internal Structure of Storage Manager

Accessed by specific
client storage

5.4.3 Remote Storage

The remote storage uses a relational database at the backend to store the data and exposes
an XML web service which is publicly accessible and authenticated by user credentials.

The web service is developed using ASP.NET and it uses a Microsoft SQL Server

database.
Get request
@ XML format
g ____________ ‘ Relational Database
Client Web service end point

Save request (Generate unique ID if necessary)

Figure 30: Internal Design of Remote Storage

Figure 30 describes the internal design of the remote storage system. The web service in
remote server transfers data between the server and the client in text form which contains
XML data. When client requests to save a new touch interaction data, the server ensures

that the key provided by the client is unique. Since there could be multiple clients

58

59
communicating with the server at the same time, if a duplicate key is found the server
adds a timestamp at the end of the key to make it unique.

5.5 Automated Test Framework

Automated unit testing is a well-known way to increase the effectiveness, efficiency and
coverage of software testing [40]. It is one of the industry standard methods for
repeatedly verifying and validating individual units of the application in regression
testing. Though there are some simulators available to manually test tabletop
applications, tool support for unit testing multi-touch gestures is limited.

Record and playback can be used for both manual and automated testing. While manual
test may involve gesture detection as well as other Ul related functionality testing, the
automated test framework focuses specifically on validating gesture detection code. Most
automated Unit Test systems do not have the option to use an active Ul during test.
However, gestures are directly related to the Ul and testing them often requires Ul
specific functionality. To mimic a realistic application scenario, the test framework
creates an in-memory virtual Ul layer and subscribes to gesture events in the same way
that an application would. The test framework can be used to test any type of gestures
that is defined using the gesture definition language, including complex multi-touch
gestures that involve touch interactions with multiple steps.

Figure 31 shows the workflow of an automated test in GestureToolkit. To start, it creates
the virtual application and registers the necessary gesture events during the initialization
process. Then the TouchRecorder loads the data from storage and starts the simulation
process. If a test involves simulating multi-user scenarios using multiple touch

interactions then the system merges frames from individual recorded data into one time

59

60
line. The virtual device continues to send simulated device messages to the framework.
As soon as the desired gesture is detected, it invokes the user defined validation code.
Depending on the type of gesture, the user defined code can be invoked multiple times.
Regardless of the status of gesture detection, the framework also invokes the “Playback

Completed” test code defined by the user at the end.

® @

Test Framework Touch Recorder
Create virtual app. Load data from
¢ o storage
Register gesture +
events Merge timelines

v

Init. virtual device

User’s validation code

Playback Completed [==---4 Simulate touch
Gesture detected +--+ L
L_ Core, Gesture Processor
& Event Controller
3
—>—> Continuous flow --—- Asynchronous communication

Figure 31: Workflow of Automated Test Framework

5.5.1 Asynchronous Test Environment

Traditional unit tests execute sequentially, however, multi-touch gesture based user
interactions require asynchronous processing. For example, a “Flick” gesture requires a
certain period of time to complete, so a test to validate the recognition of that gestures
must wait until the gesture is completed. Such tests require asynchronous execution

which is supported by the GestureToolkit test framework API.

60

61
Multi-touch gesture interactions can trigger continuous events. For an example, a photo
viewer application needs to keep responding to the “Zoom” gesture in “real-time” as long
as the zoom interaction continues. So, a test for this scenario needs to validate the zoom
interaction continuously instead of just once it is completed. The GestureToolkit test
framework allows a developer to write unit test cases for such continuous touch-
interactions.
To support asynchronous and continuous interaction testing, our test framework is event
driven. The core of the API is the Validate method which takes the following
parameters:
e expectedGestureName: The name of the gesture to detect (e.g., Zoom).
e savedInteraction: The identifier or the recorded interaction that should produce
the expected touch interactions.
e gestureDetectedCallback: The method to call when the gesture is detected.

Developers can write custom validation code inside this method.

61

62

1 [TestMethod]
2 public void TestZoom()
3 BA
- bool gestureDetected = false;
var threadHolder = new AutoResetEvent (false) ;
GestureTestFramework.Validate("Zoom", "TouchInteraction02",
// On successful gesture detection
(sender, e) =>
= {
11 gestureDetected = true;
12 if (e.Error == null)
13 H {
4 var distanceChanged = e.Values.Get<DistanceChanged>() ;
15 // User defined wvalidation code
16 }
1 else
18 H {
9 Assert.Falil(e.Error.Message) ;
2 }
21 P

2z threadHolder.WaitOne () ;
: Assert.IsTrue (gestureDetected, "Falled to detect the gesture!");

Figure 32: Example unit test code using Touch Toolkit

Figure 32 shows a code fragment that is used to test if the “Zoom” gesture is detected as a
result of playing the saved interaction named “TouchlInteraction02”. In line 5 and 23 of
the code, we use an existing class named AutoResetEvent from the System.Threading
class library in the Microsoft .NET framework to implement the asynchronous unit test
execution. AutoResetEvent allows threads to communicate with each other by sending
signals. The Validate API as discussed above is used in line 7. In addition to just the
detection of the “Zoom™ gesture a developer can provide additional validation code

around line 15.

62

63

// Custom walidation code

if (previocus != nmll)
{
Assert.IsTrue (current.Distance>previous.Distance,
"Invalid Zoocm™) ;
}
previous = current;

Figure 33: User defined gesture validation code

Figure 33 shows how to write unit test for continuous interactions such as “Zoom”. Here
the purpose of the validation is to see if the distance between subsequent touch points
during a “Zoom” gesture is increasing. Using this same approach GestureToolkit allows
developers to write unit test code for validating multi-touch interactions.

5.6 Event Manager

The framework provides an interface to subscribe to events for specific gestures in a
method similar to how applications receive messages for mouse or keyboard events.
shows the code snippet to subscribe a gesture named “zoom”. It also allows defining the

scope of the gesture which is the image object “imagel” in this case.

G.EventManager.AddEvent({imagel, "zoom", ZoomCallback);

void ZoomCallback(UIElement sender, GestureEventhrgs el

var dis = e.Values.Get<DistanceChanged>();
if (dis !'= null)
Resize(sender as Image, dis.Delta);

Figure 34: The code snippet to subscribe *Zoom™ gesture

The framework passes the source of the gesture and return types specified in the gesture

definition through the arguments of the callback method.

63

64
Figure 35 shows the internal architecture of the framework that runs the gesture
recognition engine. The gesture definitions and primitive conditions live outside the core
framework and are loaded on demand. Therefore, the framework only loads the gesture

definitions that are registered by the application at run time.

Application

Register
events l T Callbacks

Gesture Definition 1

T
Gesture Processor [i

Gesture Definition n

~

Raw touch data

Hardware Abstraction Layer

Windows 7 M5 Surface TUIO

Figure 35: The simplified architecture of gesture processor

The gesture processor is responsible for efficiently evaluating the primitive conditions.
For example, if a primitive condition is used in multiple gestures and needs to be
evaluated under the same context then the gesture processor will take necessary steps to
perform the validation once and reuse the output later.

5.7 Summary

This chapter focuses on describing the implementation details of GestureToolkit. It also
explains how the touch interaction recorder can be used to simulate multi-user scenarios
and write automated test scripts. The technical challenges that were faced during the

development of GestureToolkit are discussed in the next chapter.

64

65

Chapter Six: Technical Challenges

From planning to designing and throughout the implementation stage, we faced different
types of technical challenges including choosing the right platform, future maintenance,
usability of the toolkit and many more. We describe these challenges in the following
sections.

6.1 Designing the Language

While choosing the platform for the language, we found several possible approaches:
first, use an existing general purpose programming language (i.e. C++, C#, Java) to
define gestures; second, use functional programming languages (i.e. Scala, F#) to define
gestures; third, create a new domain-specific language from scratch. All of these
approaches have trade-offs in terms of ease of use, runtime performance, expressiveness,
flexibility and ease of implementation.

The key advantage of using an existing general purpose programming language is that it
has very limited or almost no learning curve. An existing language also reduces the
implementation complexity, considering that the language grammar, compilers, and
developer tools are already available. The main reason behind not choosing this approach
is the inability to add new primitives to the language to ensure simplicity and readability.
For example, the zoom gesture definition may use keywords like “increasing” to define
touch patterns and reader friendly names for return types. It would not be possible to
provide such custom syntax support with C++ or any other general purpose language.
The features of new functional programming languages like Scala [23] or F# are
impressive. The syntax of F# carries less noise (i.e. no curly brackets, simpler parameter

passing) compared to C++ or similar languages. It also provides unique features, like

65

66
method chaining, that are important to GDL. Finally, under the hood it’s just another
language in the .NET family and it compiles into a regular common language runtime
class, which makes the integration with existing Ul frameworks quite straightforward.
Although the features of F# look appealing, it suffers from limitations similar to general
purpose languages including the inability to add new coding styles, keywords, and the
like.

Considering the alternatives and requirements of the language, we chose to design a new
language from scratch. Mernik [27] provides some good explanations on when and how
to develop a new DSL along with common challenges. There are a few tools available to
design DSLs, including ANTLR [25] and MGrammar from Microsoft DSL tools
(codenamed “Oslo”) [26]. We decided to use MGrammar for a number of reasons; it
provides built-in support for IntelliPad, a free IDE for language design, and it supports
on-the-fly error checking and syntax highlighting for DSLs without much additional
effort.

We developed the language parser and framework using Microsoft .NET. It can be used
in both web applications via Silverlight and desktop applications like Windows Forms or
Windows Presentation Foundation. Silverlight provides comprehensive support for user
interface design and native multi-touch, and runs on both Mac and Windows operating
systems. So, we believe it can reach a greater range of users and developers compared to
other platforms.

6.2 Hardware independence with device specific support

Windows 7 is the first operating system from Microsoft that has native support for touch

devices. So as long as a multi-touch device is supported by the Windows 7, the

66

67

application developers can rely on touch messages from the operating system and build
device independent applications. However, the reality is that a number of popular multi-
touch devices including the Microsoft Surface do not have the necessary driver support
for the Windows 7 operating system. As developing applications using the vendor
provided SDK (e.g. Microsoft Surface SDK, SMART SDK) would make the application
bind with that particular device, creating a device independent multi-touch application
framework was a challenge.
To build a framework that would work with different multi-touch devices, the design of
the communication modules that passes the touch related messages into the framework
needs to be decoupled and extensible. So that the rest of framework and applications
developed using the framework can work without any change in code. To achieve this,
we followed the provider model design pattern. In GestureToolkit, the modules that
responsible for translating device specific data into a generic format are called input
providers. Each provider is extended from a base provider and the framework uses one of
these providers depending on the device the application is running on.

6.3 Extensibility

During the development and evaluation process we observed that the gesture definition
language needs an easy-to-implement extensibility framework that would allow a
knowledgeable application developer to create or share new primitive conditions and
return types. We found two key challenges to provide this functionality. First, the
language parser needs to be updated whenever a primitive condition or return type is

added. Second, the framework should be able to get the related class files from the

67

68
application assembly so that they don’t have to add the classes in framework assemblies
which would require recompilation of the framework.

To address the first challenge, the parser is designed in a way that application developers
can only provide the parsing logic for the new language components inside the
application assembly and at runtime the parser will update the parser definition,
recompile and build the parser module and then start parsing the gesture definitions. The
details are explained in section 4.1.3.

To address the second challenge, the framework uses reflection’ to find out and
dynamically load the dependent classes related to primitive conditions and return types
that are used in the gesture definition. This process allows the external developers to
independently implement new recognition algorithms and contribute to GestureToolkit
framework. These language components follow a plug-in approach which allows
application developers to freely share them across projects.

6.4 Developer Expectations

From the exploratory study, developer feedback in preliminary evaluation and based on
our own experience, we found that developers have a wide range of expectations from a
toolkit. These expectations can be grouped into two categories: Productivity Tools and
Implementation Details.

6.4.1 Productivity Tools

A common developer expectation is good IDE support including warning message,

templates, syntax highlighting, auto-complete and integrated build. To address these

! A technique by which a program can observe and modify its own structure and behavior at runtime.

68

69
issues, GestureToolkit provides these features except auto-complete for Visual Studio
2010 — the most widely used IDE in .NET developer community. The features related to
integrated developer environment are described in Section 4.2.4.

6.4.2 Implementation details

We observed that experienced developers are often interested in low level
implementation details, performance issues and access to the framework via an
application programming interface (API). To address this, we ensured that all public
methods in the framework have comments about its functionality. They were written by
the same developer who developed it. The framework also provides a rich set of low-
level APIs that allows knowledgeable developers to directly use internal framework
features. For example, the same recorder module that is used by the automated test
framework to store application specific touch interactions can be used to build interactive

tutorials for custom applications.

69

70

Chapter Seven: Evaluation

After completing the implementation of all major features, a preliminary evaluation was
conducted with the same participants of the initial exploratory study to assess the
usability and appropriateness of the toolkit.

We performed the preliminary evaluation with a focus on getting early feedback from
experienced multi-touch application developers about the usability and appropriateness of
the toolkit. All of the studies were done individually. We used an audio recorder to record
the conversations and a screen capturing tool to record a user's activities on the screen
during the coding tasks. The evaluation was done three months after the initial
exploratory study using the same participants.

7.1 Data Collection

Each session lasted 50 minutes and consisted of three sections as follows:
First, we showed the participant a seven minute introductory video describing the main
features of our framework and spent 1-2 minutes on follow up discussion. Then, we
asked the participant to perform the following three tasks to a partial implementation of a
tabletop photo viewer application:
e Add a photo resize features using the predefined zoom and pinch gestures.
e Record the resize interaction for later be use in automated testing of the
application.
e Write a UnitTest to automatically test the zoom gesture in an existing visual
studio test project.

e Define a new gesture using GDL

70

71
Finally, we conducted a semi-structured interview to collect feedback on the toolkit and
to better understand each participant's experiences using the toolkit.
7.2 Findings
At a high level, our preliminary evaluation has suggested that the GestureToolkit test
framework:
e can be used to write unit tests for touch interactions, and
e the record/replay feature can be used to overcome some of the testing and
debugging challenges.
e GDL helps to simplify the gesture definition process to a great extent. However,
better IDE support can improve developer efficiency.
These findings are discussed in some more detail in the remainder of this section.

7.2.1 Findings from Task 1: Adding Resize Functionality

Participants were asked to add resize functionality for the image objects. The required
gestures (zoom and pinch) were available in GestureToolkit's predefined list of gestures.
The purpose of this task was to evaluate the usability of the gesture event subscription
API.

Participants P2 and P3 were able to complete the task. However, P1 partially completed
the task but faced difficulty on using the right data type from the library. We found that
she was expecting that the IDE's auto-complete feature would help her to determine
which types to use, however this feature was not supported in this case.

In summary, the participants were able to understand how to use the toolkit to implement
an application feature. We also found that participants were expecting comprehensive

IDE support not yet available in our prototypical implementation.

71

72

7.2.2 Findings from Task 2: Record the Resize Touch Interaction

This task requires one to do the following:

e Write the appropriate code to show the recording panel in the debugger.

e Use the recorder panel to record the touch interactions.
These steps were demonstrated in the introductory video. All of the participants
successfully completed this task. This feedback indicates that our participants could
quickly learn how to record an interaction using the tool.

7.2.3 Findings from Task 3: Writing Unit Test

Participants were asked to write a unit test to validate the “zoom” gesture. To ease the
process of writing unit tests, GestureToolkit provides IDE templates of test code.
However, a developer needs to write the actual test code depending on the specific
interaction under test.

The purpose of this task was to see how easily a developer can understand the test API
and the appropriate structure for writing unit tests for gestures. The “zoom” gesture was
chosen for three reasons. First, it is a common and comparatively simple gesture and the
associated test plan is straightforward. Second, this is a scenario that requires developers
to write asynchronous test code and developing the test logic. Finally, “zoom” is a
continuous gesture that requires the test code to react in a continuous fashion. This test
scenario gave our participants an opportunity to use all of the main testing features
provided by our framework.

All the participants completed the task. While participant P1 was not familiar with the
concept of inline functions which simplifis the asynchronous code execution to a great

extent, she was able to complete the task as the IDE template already placed the basic

72

73
code structure. This indicated that the participants, after implementing and recording an
interaction using GestureToolkit, could write an automated test for the interaction. We
also found that templates can help reduce the learning curve for new developers.

7.2.4 Findings from Task 4: Define a New Gesture using GDL

The participants were given a printed copy of the list of available primitive conditions
and return types and asked to define a five-finger-selection gesture. The participants were
given with examples of the gesture but specific rules to recognize the gesture was left out
for participants to decide. The definitions written by each participant were different from
the logical perspective. However, they were able to use the language to define the gesture
according to their own logical concepts. This shows that developers can use the language
to define custom gestures.

7.3 Summary of Preliminary Evaluation

This study has provided preliminary evidence that our test framework provides effective
support for many of the challenges that our participants faced in their debugging and
testing of tabletop applications. For example, Participant P3 appreciated that the
GestureToolkit allowed him to test and debug without moving between the tabletop
device and his workstation, which he believes will help him to be more efficient in his
development:

“For sure it will save a lot of development time as you don't have to move between the
device and development machine back and forth just to test a feature.”

He also felt it was valuable that “you can also interact when playback is going on” as it
makes many debugging scenarios easier. Participant P2 felt that the main benefit of the

framework for him would be the ability to develop automated tests and use those as part

73

74
of continuous integration suite. Finally, participant P1 felt that the support for device
independent record and replay in the GestureToolkit to be the most useful for her
development work.

7.4 Community Response

In addition to formal evaluation we also received community initiated responses. The
GestureToolkit project is an open-source project published under the GNU Library
General Public License (LGPL) and hosted at CodePlex. The entire source code,
documentation, issue tracker and discussion on future plans are available at
http://gesturetoolkit.codeplex.com. Since the first release, we have received encouraging
feedback from both the academic research community and industry including team
members from the tabletop team at SMART Technologies and the Microsoft Surface
team at Microsoft. The project has also been highlighted on a number of popular websites

including www.infoQ.com. Figure 36 shows the project website activity from April 2010

to October 2010.
Page Views 13431
Wisits 2843
Downloads 360
Application Runs MAA

Figure 36: The GestureToolkit Project website activity till October 2010

74

75

Chapter Eight: Conclusion

This thesis presents an approach to improve the tool support of multi-touch application
development and testing. First, an overview of the challenges involved in developing
multi-touch applications was presented to provide the background necessary to
understand the challenges in this field. Next, a discussion of previous attempts in
different areas of multi-touch application development process was presented, and the
strengths and weaknesses of these approaches were discussed. A domain-specific
language to define gestures and a framework, GestureToolkit, were developed to reduce
the development complexities and provide support for testing multi-touch interactions in
both manual and automated approach. The structure of GestureToolkit and its
implementation details were discussed. Preliminary evaluations were then conducted to
validate the research goals described in Section 1.2 and to give insight into the strengths
and weaknesses of GestureToolkit.

8.1 Thesis Contributions

The first contribution of this thesis is the exploratory study covering the challenges that
the developers are facing today to build multi-touch applications. First, it compares the
results of existing research on useful gestures for multi-touch surfaces with the gesture
support available in existing tools and frameworks. Then, it presents an investigative
report on three touch based applications to understand the touch related requirements of
different applications. Finally, a semi-structured interview with experienced developers
reviled the challenges a developer face during building multi-touch applications. The

result of this exploratory study should make it easier to focus on framework and tool

75

76
development in the future as it can help to determine the difficulties of the development
process of multi-touch applications.

The second contribution of this thesis is the gesture definition language (GDL). GDL
presents a new concept for defining gestures and an approach to integrate it with existing
application frameworks. The language supports multi-user, multi-touch and multi-step
gestures; and also provides an extensible architecture that allows adding new primitives
into the language. Preliminary evaluation shows that developers like the concept of a
domain-specific language to define gestures.

The third contribution of this thesis is GestureToolkit — a software development kit for
multi-touch applications. GestureToolkit fulfills the research goals described in Section
1.2. Not only GestureToolkit is the only tool currently supports a domain-specific
language to define custom gestures but it is also the only tool that provides an automated
test framework for gesture validation. GestureToolkit also provides a visual feedback
framework that allows the developer to build applications with consistent visual feedback
for touch and gestures across different devices. The device virtualization technique of
GestureToolkit enables development and testing of multi-touch applications from non-
touch enabled computers (e.g. regular desktop PC). Most important, however, is that
GestureToolkit is a device independent framework and applications developed using it
can run on any of the supported devices without any change in the application code.

8.2 Limitation

While GestureToolkit helps to simplify the multi-touch application development in many
ways, it also has a few limitations. The language and related frameworks are developed

using Microsoft .NET and well integrated with Visual Studio IDE. This makes it easy to

76

77
use for any application that runs on the same platform. It does not, however, support
application development with non-Microsoft languages.

GDL is intended to be used for multi-user, multi-touch based applications. While the
language supports multi-step gestures, it is currently limited to gestures with sequential
steps. The language can also be extended to support wider range of logical conditions
(e.g. NOT, XOR).

The purpose of the preliminary user study was to generally evaluate the approach taken in
GestureToolkit. We had three experienced tabletop application developers as our
participants. We recognize that a comprehensive user study involving more participants
can provide more generalizable insights about the approach and our tool.

8.3 Future Work

The ongoing research focuses on generating gesture definitions from sample datasets of
touch interactions and a visual representation of the gesture definition. This will allow
users to define a gesture from sample touch data and the visual DSL will allow non-
experts to fine tune the logical conditions. However, the research is still at the early state
and we would like to provide these features in GestureToolkit in the future.

We would also like to provide additional logical operators in the gesture definition
language. In addition to the record/replay based testing, a programmable user interface
automation testing for multi-touch applications could also be an interesting approach that

we would like to investigate in the future.

77

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

78
References

Selim, E. and Maurer, F. eGrid: Supporting the Control Room Operation of a Utility
Company With Multi-Touch Tables. The ACM International Conference on
Interactive Tabletops and Surfaces, November 7-10, 2010, Saarbrucken, Germany.
Wang, X., Ghanam, Y., Park, S. and Maurer, F. Using Digital Tabletops to Support
Distributed Agile Planning Meetings, In Proc. of 10th International Conference on
Agile Processes and eXtreme Programming (XP 2009), Demo Abstract, Pula, Italy,
2009
Zabir, O., Khandkar, S. Hossain, M., and Raihan, A. 2005. SmartUML.
http://smartuml.sourceforge.net
Multi-Touch Vista, http://multitouchvista.codeplex.com/. 2010
N. Villar et al., “Mouse 2.0: multi-touch meets the mouse,” in Proc. UIST, vol. 9,
pp. 33-42.
U.S. Pawar, J. Pal, and K. Toyama, “Multiple mice for computers in education in
developing countries,” International Conference on Information Technologies and
Development, 2006.
J.C. Lee, “Hacking the nintendo wii remote,” IEEE Pervasive Computing, 2008, pp.
39-45.
Florian Echtler and Gudrun Klinker, “A Multitouch Software Architecture,”
NordiCHI 2008: Using Bridges, 18-22 October, Lund, Sweden.

Touchlib: A multi-touch Development Kit, http://nuigroup.com/touchlib/, 2010.

78

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

79
E. T. Hansen, J. P. Hourcade, M. Virbel, S. Patali, T. Serra. “PyMT: A Post-WIMP
Multi-Touch User Interface Toolkit”. International Conference on Interactive
Tabletops and Surfaces, 2009.
Bastéa-Forte M., Yeh, RB and Klemmer, S.R. Pointer: Multiple Collocated Display
Inputs Suggests New Models for Program Design and Debugging. In Extended
Abstracts of UIST (Posters), 2007.
J. O Wobbrock, A. D Wilson, and Y. Li, “Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes,” in Proceedings of the 20th
annual ACM symposium on User interface software and technology, 2007, 168.
S. Kratz and M. Rohs, “A $3 gesture recognizer: simple gesture recognition for
devices equipped with 3D acceleration sensors,” Proceeding of the 14th
international conference on Intelligent user interfaces, 2010, pp. 341-344.
Sezgin, T.M. and Davis, R. (2005) HMM-based efficient sketch recognition. Proc.
IUI '05. New York: ACM Press, 281-283.
Cao, X. and Balakrishnan, R. (2005) Evaluation of an on-line adaptive gesture
interface with command prediction. Proc. Graphics Interface '05. Waterloo, Ontario:
CHCCS, 187-194.
Anderson, D., Bailey, C. and Skubic, M. (2004) Hidden Markov Model symbol
recognition for sketch-based interfaces. AAAI Fall Symposium. Menlo Park, CA:
AAAI Press, 15-21.
Pittman, J.A. (1991) Recognizing handwritten text. Proc. CHI '91. New York: ACM

Press, 271-275.

79

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

80
Cho, M.G. (2006) A new gesture recognition algorithm and segmentation method of
Korean scripts for gesture-allowed ink editor. Information Sciences 176 (9), 1290-
1303.
Dietz, P. and Leigh, D. DiamondTouch: A Multi-User Touch Technology. UIST
2001, 219-226
D. Schmidt, H. Gellersen, “Show Your Hands: A Vision-Based Approach to User
Identification for Interactive Surfaces”, International Conference on Interactive
Tabletops and Surfaces, 2009
I. Rosenberg, K. Perlin, C. Hendee, A. Grau, and N. Awad, “The UnMousePad: the
future of touch sensing,” SIGGRAPH'09: Posters, 2009, p. 23.
C. North, T. Dwyer, B. Lee, D. Fisher, P. Isenberg, G. Robertson, K. Inkpen, and
K.I. Quinn, “Understanding Multi-touch Manipulation for Surface Computing,”
Interact 2009
The Scala Programming Language. http://www. scala-lang.org/, 2010
F# at Microsoft Research. http://research. microsoft.com/en-
us/um/cambridge/projects/fsharp/, 2010
ANTLR: A Tool to Build Domain Specific Languages, http://www.antlr.org/, 2010
Microsoft DSL tools, http://msdn.microsoft.com /en-us/data/default.aspx, 2010.
M. MERNIK, J. HEERING, and A.M. SLOANE, “When and How to Develop
Domain-Specific Languages,” ACM Computing Surveys (CSUR) Volume 37, 316 -
344, Issue 4, 2005, 2004, p. 694.
J. Elias, W. Westerman, and M. Haggerty. Multi-touch gesture dictionary. United
States Patent 20070177803, 2007

80

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

81
J.0. Wobbrock, M.R. Morris, and A.D. Wilson, “User-defined gestures for surface
computing,” Proceedings of the 27th international conference on Human factors in
computing systems, 2009, pp. 1083-1092.
S. Gilbert et. al. SprashUl toolkit. http://code. google.com/p/sparsh-ui/
Fails, J. and Olsen, D. A design tool for camera-based interaction. In Proc. CHI,
2003.
Ilya Rosenberg and Ken Perlin, “The UnMousePad - An Interpolating Multi-Touch
Force-Sensing Input Pad” ACM Transactions on Graphics 28, no. 3 (7, 2009): 1.
Lee, SK., Buxton, W., and Smith K.C. 1985. A Multi-Touch Three Dimensional
Touch-Sensitive Table. In Proceedings of the SIGCHI conference on Human factors
in computing systems. CHI ’85. ACM, San Francisco, California.
MGraphXamlIReader, http://code.msdn.microsoft .com/SQLModCTPMGXaml,
2010
Strauss, A. L. and Corbin, J. Basics of Qualitative Research: Techniques and
Procedures for developing Grounded Theory. Sage Publications, 1998.
Dan Saffer: Designing Gestural Interfaces, 2008.
PLATO (Programmed Logic for Automated Teaching Operations) was the first (ca.
1960, on ILLIAC 1) generalized computer assisted instruction system.

http://en.wikipedia.org/wiki/Plato computer, 2010.

Multi-Touch Systems that | Have Known and Loved, Bill Buxton,

http://www.billbuxton.com/multitouchOverview.html, 2010

Microsoft Surface, http://www.microsoft.com/surface/en/us/default.aspx, 2010.

81

http://en.wikipedia.org/wiki/Plato_computer
http://www.billbuxton.com/multitouchOverview.html
http://www.microsoft.com/surface/en/us/default.aspx

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

82
Beck, K. and Andres, C. 2004 Extreme Programming Explained: Embrace Change
(2nd Edition). Addison-Wesley Professional.
David Langworthy; Brad Lovering; Don Box. The “Oslo” Modeling Language:
Draft Specification - October 2008
Fails, J. and Olsen, D. A design tool for camera-based interaction. In Proc. CHI,
2003.
Witten, 1. H. and Frank, E. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.
Westeyn, T., Brashear, H., Atrash, A. and Starner, T. Georgia tech gesture toolkit:
supporting experiments in gesture recognition. In proc. ICMI, 2003.
Ashbrook , D. and Starner,T. “MAGIC: a motion gesture design tool,” in
Proceedings of the 28th international conference on Human factors in computing
systems, pp. 2159-2168, 2010.
Long, A. C., Landay, J. A. and Rowe, L. A. “Quill: a gesture design tool for pen-
based user interfaces,” Eecs department, computer science division, UC Berkeley,
Berkeley, CA, 2001.
Kara, L. B. and Stahovich, T. F. An image-based, trainable symbol recognizer for
hand-drawn sketches, Computers & Graphics, vol. 29, no. 4, pp. 501-517, 2005.
Cardenas, T., Bastea-Forte, M., Ricciardi, A., Hartmann, B. and Klemmer, S. R.
Testing Physical Computing Prototypes Through Time-Shifted \& Simulated Input
Traces. In extended abstracts of UIST 2008.
Testing the User Interface with Automated Ul Tests, Microsoft Developer Network,
2010. http://msdn.microsoft.com/en-us/library/dd286726.aspx

82

[50]
[51]
[52]
[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

83

Project White, http://white.codeplex.com/white, 2010.

Selenium, http://seleniumhg.org/, 2010.

QF Test, http://www.qfs.de, 2010.

Frog Logic, http://www.froglogic.com/, 2010

Cocoa Touch Apps, http://cocoatouchapps.com, 2010.

Vimov, http://www.vimov.com/, 2010.

Gray, P., Ramsay, A. and Serrano, M. “A demonstration of the Openlnterface
Interaction Development Environment,” UIST'07 Adj. Proc.

SMART Tabletop, http://smarttech.com, 2010.

Windows 7 Touch, http://windows.microsoft.com/en-CA/windows7/products/

features/touch, 2010.
TUIO, http://tuio.org, 2010.

IntelliPad, http://blogs.msdn.com/b/intellipad/, 2010.

83

http://white.codeplex.com/white
http://seleniumhq.org/
http://www.qfs.de/
http://www.froglogic.com/
http://cocoatouchapps.com/
http://www.vimov.com/
http://smarttech.com/
http://windows.microsoft.com/en-CA/windows7/products/%20features/touch
http://windows.microsoft.com/en-CA/windows7/products/%20features/touch
http://tuio.org/
http://blogs.msdn.com/b/intellipad/

Appendix A: List of Predefined Gestures

1. Tap

name: Tap

validate
Touch state: TouchUp
Touch limit: 1
Touch time: 18 msec
Touch path bounding box: 1x1..182x128

return
Position

2. Drag

3.

name: Drag

validate
Touch state: TouchMove
Touch limit: 1..3
On same object

return
Position, Position changed

DoubleTap
name: DoubleTap

validate
Touch state: TouchUp
Touch limit: 1
Touch step: 2 touches within 1 sec

Touch area: Rect 58x50 including last 1 touch within 1 sec

return
Position

84

84

4. Zoom
name: Zoom

validate
Touch state: TouchMove
Touch limit: 2
On same object and Distance between points: increasing

return
CDistance changed

5. Pinch
name: Pinch

validate
Touch state: TouchMove
Touch limit: 2
On same object and Distance between points: decreasing

return
Distance changed

6. Rotate
name: Rotate

validate
Touch state: TouchMove
Touch limit: 2
0On same object
and Distance between points: unchanged 10%

return
Info:Rotate, Slope changed

85

7. Lasso

name: Lasso

validate
Touch state: TouchUp
Touch limit: 1
Closed loop and
Touch path bounding box: 200x2008..1880x1288 and
Touch path length: &20..180082 and
Enclosed area:5808..10022808

return
Touch points

8. 5-finger-selection
name: S5-finger-selection

validate
Touch state: TouchMove and
Touwch limit: 3..5 and
Distance between points: 58..25@2 and
Distance between points: unchanged 18%

return
Touch points

86

86

87
Appendix B: Ethics Approval
A scanned copy of the original ethics approval is provided for the following two user
studies:
e “Testing Multi-user Multi-Touch Tabletop Applications” — File # 6384, and
e “A Gesture Definition Language for Cross-Platform Multi-Touch Applications” —

File # 6400.

87

88

88

89

89

90

90

91

91

92

Appendix C: Co-Author Permission

This section provides the scanned copies of the co-authors written permission to use the

content of the following publications in this thesis and to have this work microfilmed:

A Domain Specific Language to Define Gestures for Multi-Touch Applications. In
Proceedings of the 10th SPLASH Workshop on Domain-Specific Modeling,
Reno/Tahoe, Nevada, USA, 2010.

o Co-authors: Frank Maurer.
Tool Support for Testing Complex Multi-Touch Gestures. In Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces,
Saarbriicken, Germany, 2010.

o Co-authors: SM Sohan, Jonathon Sillito and Frank Maurer.
A Language to Define Multi-Touch Interactions. In Proceedings of the ACM
International Conference on Interactive Tabletops and Surfaces, Saarbrucken,
Germany, 2010.

o Co-authors: Frank Maurer
FitClipse: A Tool for Executable Acceptance Test Driven Development. In
Proceedings of 10th International Conference on Agile Processes and eXtreme
Programming (XP 2009), Pula, Italy, 20009.

o Co-authors: Yaser Ghanam, Shelly Park and Frank Maurer.

92

93

93

94

94

95

95

96

96

97

97

98
Appendix D: Adding new hardware/device support
Adding additional providers to the toolkit allows for applications to work on additional
platforms. The source code described here represents the October 2010 CTP release of
the Toolkit. The following steps (generically) outline how to add a provider for numerous
touch-enabled platforms:

Step 1:

In Visual Studio, create a new C# file, preferably close to the device name.

Y l& TS @10 LU IO ey Visudl e
C\i_i Class Visual C#
*:‘ -
:ﬂ" Interface Visual C2
: :| Windows Form Visual C#
-H. User Contral Visual C=
Mame: platformProvider.cs
[e l

Step 2:

It is important to understand the events that are supplied with the SDK of the platform
you wish to support (and write the provider for). The key events to understand are
typically related to "Touch down", "Touch up" and "Touch move". This example
demonstrates how to write a provider for the Microsoft Surface, which uses the events
"ContactDown", "ContactLeave™ and "ContactChanged".

Step 3:

The 1st step in coding your provider is to import all the necessary references, which will

include the following:

98

99

using Framework;

using TouchToolkit.Framework;

using TouchToolkit.Framework. Utility;

using TouchToolkit.GestureProcessor .Ghjer_t'._;
using TeuchTeolkit.Framework. TeuchInputPraviders;

This will allow you to wuse the necessary components of the linked
GestureToolkit.Framework and GestureToolkit.GestureProcessor.

Step 4:

When Microsoft Surface SDK is used, the touch data can be retrieved from the
SurfaceWindow object. However, different device SDKs may provide this data in
different ways. So we create a private variable to keep the reference of the window object

that we will use later to retrieve touch data.

private SurfaceWindow _window;
public SurfaceTouchInputProvider{Surfaceiindow window)
f

window = window;

}
In your application, this window is usually bound to the GestureFramework with the
provider you create, which will be shown later.

Step 5:

Next, it is important to setup some manner of storing active touch points and touch
information that is required for the Framework to manage multi-touch information.

Typically, the best manner is to use the dictionary implementation as shown below.

private Dictionary<int, TouchPointZ» _activeTouchPoints = new Dictionary<int, TouchPoint2a();
private Dictionary<int, TouchInfo» _activeTouchInfos = new Dictionary<int, TouchInfax();
Step 6:

The next step, involves the linking of the events in the SDK to methods. These events are

first linked to the private window provider.

99

100

public override woid Init()

{
/4 Add the mnecezsary event handlers
_window.ContactDown += ContactDown;
_wlndow.ContactChanged += ContactChanged;
_window.Contactileave += Contactleave;

_contactTarget. FrameRece ived += new EventHandler<FrameReceivedEventArgsy {_contactTarget F rameReceived);
_contactTarget.EnableTInput();

Step 7:

The UpdateActiveTouchPoints method, allows for the continuous stream of touch points

provided by the hardware, to be updated in GestureToolkit.

= public vold vpdatefctiveTouchPoints{Touchiction2 action, Microseft.Surface.Presentation.ContactEventirgs e}

{
ffGet the point positien from the ContactEventirgs (can optionally use e.Contact.getCenterPocition here for sore accuracy)
Point pesition = e.GetPesitlon(GestureFramework. LayoutRoot) ;|
f/Create a new touchinfe which will be used later to add a touchpoint
TouchInfe info = new TouchInfol);
Jfset the action type to the passed in actien
info.ActionType = action;
f/5et the pesition of the touchinfo te the previously found position from e
info.Position = position;
ffset the deviceid of the towchinfo to the id of the contact
info.TouchDeviceld = e.Centact.Id;
TeuchPeint2 touchPoint = null;
f/If it is contact down, we want to add the point, otherwise we want to wpdate that particular point
if (action == Touchd 2. Down)
Jfadd the new towch point to the base
touchPoint = base.AddNewTouchPoint(info, e.OriginalSource as UIELement);
}
else
{
ffadd the new touch peint to the base
touchPoint = base.UpdateActiveTouchPeint{info);
1
{/ Update local cache
if {_activeTouchPoints.Containskey(info. TouchDeviceld))
{
_activeTouchPoints[info. TouchDeviceld] = touchPedint;
_activeTouchInfos|info. TouchDeviceId] = infoj
else
{
_activeTouchPoints. Add{info. TouchDeviceld, touchPeint);
_activeTouchInfos.Add(info. TouchDeviceld, infa);
45 }
¥

Lines 107 - 119, illustrate capturing the position of the touch point, and creating a new

touchinfo object containing the action, position and device id of the contact.

100

101
Lines 121 - 133, illustrate the addition or update of touch points. If a down contact is
received, it means that a new touch point needs to be added whereas everything else
(typically move, etc) should be updated.
Lines 136-145, highlight updating the local cache of active touch points and information.

Step 8:

The final and most important step is to handle the framechanged event for the SDK of
your choice. Occasionally, this event may not be offered, in which case, a possible
solution is to set a timer for ~ 30 msecs and capture all touches in that time frame to
determine which event to raise in the SDK.

For this particular Microsoft Surface example, the SDK provides the necessary
information to forgo the timer implementation.

Lines 53-54, turn the cached active touch information and points into a list, which is
necessary to call the SingleTouched, MultiTouched and FrameChanged methods within
GestureToolkit.Framework.

Lines 57 - 76, illustrate how to raise the appropriate events for GestureToolKit.

Lines 79 - 85, update any cached touch information and points and remove any points
that are of type TouchUp, as there is no longer a touch to be associated with the

information and point.

101

102

51 3 void _contactTarget_FrameReceived(object sender, FrameReceivedEventargs e)
52 1

53 List<TouchInfor touchInfolist = _activeTouchInfos.Values. Tolist<TouchInfor({);
54 List<TouchPoint2y touchPoints = _activeTouchPoints.Values.Tolist<TouchPointi»();
55

56 /f Raise "SingleTouchChanged® event if necessary

57 if (SingleTouchChanged != null)

58 i

59 foreach (var touchPoint in touchPeints)

12

&l SingleTouchChanged({this, new SingleTouchEventirgs(touchPoint));
62 }

&3 }

G4

&5 // Raise "MultiTouchChanged™ event if necessary

[if (MultiTouchChanged !'= null)

a7

68 MultiTouchChanged(this, new MultiTouchEventargs(touchPoints));

6% I

7@

71 // Raise "MultiTouchChanged™ event if necessary

72 if tFrumfhans:d I= null)

73 i

74 var frameInfo = new FremeInfol) { TimeStamp = e.FrameTimestamp, Touches = touchInfolList };
75 FrameChanged(this, framelnfo);

75 }

7

78 Jf Cleen wp local cache

79 foreach (var touchInfe in touchInfalist)

a8

81 if (touchInfo.ActionType == TouchfctionZ.Up)

g2

83 _activeTouchInfos . Remove (touchInfo.TouchDeviceld);

84) _activeTouchPolints . Remow o Touchinfo TouchDeviceld |90 5

85

a5 }

87 3

a8

With these basic steps and Microsoft Surface, groundwork is set to for you to create your

own provider.

102

103
Appendix E: Developing the BubblesPath touch feedback
Any touch feedback in GestureToolkit needs to implement the ITouchFeedback
interface. The source code described here represents the October 2010 CTP release of the
Toolkit. The following steps (generically) outline how to add a touch feedback:

Step 1:

In Visual Studio, create a new C# file and name it as BubblesPath.

]

\EJ User Control Visual C# Items

I"Ilﬁ CnmAannen t (" lace Wienal C# Ttemes

Marme: BubblesPath.cs

Step 2:

Inherit from the ITouchFeedback interface. The interface requires you to implement

two methods: Init and FrameChanged.

public interface ITocuchFeedback: IDisposable

1

vold FrameChanged(FrameInfoc frameInfo);

vold Init(Panel rootPanel, System.Windows.Threading.Dispatcher dispatcher);

¥

The Init method is invoked only once by the framework during initialization. This is
where we should write any initialization code. In this case, we are storing the references
for the Ul where the bubbles need to be rendered and the appropriate thread (i.e.
dispatcher) which we should use for Ul rendering. Also we are creating a timer object

that we will use later for Ul animation.

103

104

public woid Init(Fanel rootPanel, Dispatcher dispatcher)

1
// save display play
_roctPanel = rooctPanel;
_dispatcher = dispatcher;
f/f Start auto update
var callback = new TimerCallback(UpdateUI);
_uilpdateTimer = new Timer(callback, null, 188, le8);
b
Step 3:

Next, we implement the FrameChanged method that is required by the ITouchFeedback

interface. This method is invoked by the framework multiple times per second to update

the UL.
public woid FrameChanged(FrameInfoc frameInfo)
{
Acticon action = () =>»
{
foreach (wvar touchInfo in
frameInfo.Touches.Where(touchInfo =» touchInfo.ActionType == TouchiActicon2.Move))
{
CreateProxyObject(touchInfo);
}
b
_dispatcher.BeginInvoke(action);
}
private woid CreateProxyObject(TouchInfoe touchInfo)
1
var po = new ProxyObject({touchInfo.Position.X, touchInfo.Position.Y, touchInfo.Groupld);
_rooctPanel.Children. Add(po);
_proxyObjects.Add(po);
h

And that’s all we need to create a new touch feedback. Note that the ProxyObject class
is an Ul element extended from the Grid class in WPF. The ProxyObject contains the

implementation for the animated fadeout effect.

104

105
Appendix F: Developing the HighlightSelectedArea gesture feedback
Any gesture feedback in GestureToolkit needs to implement the IGestureFeedback
interface. The source code described here represents the October 2010 CTP release of the
Toolkit. The following steps (generically) outline how to add a gesture feedback:

Step 1:

In Visual Studio, create a new C# file and name it as HighlightSelectedArea.

—

\ﬁ User Cantrol Visual C# Itemns
r'-nb] CnmAannent Clacs Viznal ©# tems
Mame: HighlightSelectedArea

L.

Step 2:

Inherit from the IGestureFeedback interface. The interface requires you to implement

two methods: Init and FrameChanged.

public interface IGestureFeedback

1
£A <summary >
/// Renders selected area on the specified canwvas using the dispatcher thread
ff/ «</summary:
/ <param name="dispatcher":</param>
/ <param name="feedbackCanvas"»></param>
/f/ <param name="values”:</param:
vold RenderUI(Dispatcher dispatcher, Canvas feedbackCanvas, List<IReturnType> walues);

zzzzzzzzzz

¥

The Render method is invoked only once by the framework when a gesture is detected.
This is where we should write code to start the Ul rendering task. In this case, we check
for valid set of inputs which is a collection of touch points that represents the touch path.
Then we render a polygon on Ul and use appropriate timers for the animated fadeout

effect.

105

106

public void RenderUI({Dispatcher dispatcher,
Canvas feedbackCanvas, List¢IReturnType> wvalues)

1
_dispatcher = dispatcher;
_feedbackCanvas = feedbackCanvas;
var touchPaths= wvalues.Get<TouchPaths>();
if (touchPaths == null || touchPaths.Count == @) return;
Drawlassofrea(touchPaths[@]);
StartAnimation();
¥
private woid Drawlassofrea(TouchPath touchPath)
1
_polygon = new Polygon
1
Fill = new SclidCoclorBrush{Colors.LightGray),
Opacity = 8.7,
Tag = "SELECTED AREA"
Ii
foreach (var point in touchPath.Points)
1
_polygon.Peints. Add{point);
¥
_feedbackCanvas.Children.Add(_polygon);
¥
private void Startfnimation()
1
J// Start auto update
var callback = new TimerCallback({UpdateUI);
_uilpdateTimer = new Timer(callback, null, 48, 58);
¥

And that’s all we need to create the gesture feedback that highlights a specified area.

106

