
UNIVERSITY OF CALGARY

A Domain-Specific Language for Multi-Touch Gestures

by

Shahedul Huq Khandkar

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

December 2010

© Shahedul Huq Khandkar 2010

 ii

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled " A Domain-Specific Language for Multi-Touch

Gestures" submitted by Shahedul Huq Khandkar in partial fulfilment of the requirements

of the degree of Master of Science.

Supervisor, Dr. Frank Oliver Maurer, Department of

Computer Science

Dr. Saul Greenberg, Department of Computer Science

Dr. Richard Levy, Faculty of Environmental Design

Date

 iii

Abstract

Touch has become a common interface for human computer interaction. Portable hand

held devices like smart phones to tabletops, large displays and even devices that project

on arbitrary surfaces support touch interface. However, at the end, it is the applications

that bring meaning for these technologies to people. Incorporating a touch interface in

applications requires translating meaningful touches into system recognizable events.

This notion of meaningful touch(s) to interact with the system is called gesture. The

process of gesture recognition often involves complex implementations that are

sometimes hard to fine tune. Due to the lack of higher-level frameworks, developers

often end up writing code from scratch to implement touch interactions in their

application. Furthermore testing is essential to ensure quality of the application. The lack

of automated test frameworks forces developers to rely on manual testing which is time

consuming and open to human errors. To address these issues, we present a domain-

specific language that defines multi-touch interactions, thus hiding the complexities of

low-level implementation from application developers, along with an automated testing

framework for touch based interactions. The language allows a developer to focus on

designing touch interactions that are natural and meaningful to the context of their

application without worrying about implementation complexities; and the test framework

helps to detect errors earlier by running the test frequently in an automated fashion.

 iv

Acknowledgements

I would like to take this opportunity to thank everyone that helped and supported me to

complete the research during the two years.

First of all, many thanks to my supervisor, Dr. Maurer, for limitless support, advice and

help in pursuing this thesis. The freedom in choosing a research area and continuous

guidance in every stage of the research can hardly be imagined. I would also like to thank

Dr. Sillito and Dr. Greenberg for their support and guidance on projects that helped this

research in many ways.

Special thanks to Teddy Seyed and Andy Phan for their contribution in development and

testing of GestureToolkit. Also, let me express my gratitude towards all my friends in

Agile Software Engineering Lab and elsewhere, Ali Hosseini Khayat, Shafqat Ahmed,

Darren Andreychuk, Theodore Hellmann, Keynan Pratt, Mehrdad Nurolahzade and

Seyed Mehdi Nasehi. Thank you for your time and feedback in so many discussions.

 v

Publications from this Thesis

Portions of the materials and ideas presented in this thesis may have appeared previously

in the following peer reviewed publications:

 A Domain Specific Language to Define Gestures for Multi-Touch Applications.

Shahedul Huq Khandkar and Frank Maurer. In Proceedings of the 10th SPLASH

Workshop on Domain-Specific Modeling, Reno/Tahoe, Nevada, USA, 2010.

 Tool Support for Testing Complex Multi-Touch Gestures. Shahedul Huq

Khandkar, SM Sohan, Jonathon Sillito, Frank Maurer. In Proceedings of the

ACM International Conference on Interactive Tabletops and Surfaces,

Saarbrücken, Germany, 2010.

 A Language to Define Multi-Touch Interactions. Shahedul Huq Khandkar and

Frank Maurer. In Proceedings of the ACM International Conference on

Interactive Tabletops and Surfaces, Saarbrucken, Germany, 2010.

 FitClipse: A Tool for Executable Acceptance Test Driven Development. Shahedul

Huq Khandkar, Yaser Ghanam, Shelly Park, Frank Maurer. In Proceedings of

10th International Conference on Agile Processes and eXtreme Programming (XP

2009), Pula, Italy, 2009.

 vi

Table of Contents

Approval Page ... ii

Abstract .. iii

Acknowledgements .. iv
Publications from this Thesis ...v
Table of Contents ... vi
List of Tables ... ix
List of Figures and Illustrations ...x

List of Symbols, Abbreviations and Nomenclature .. xii

CHAPTER ONE: INTRODUCTION ..1
1.1 Multi-Touch Application Development ...1

1.1.1 Tools to Define a Gesture ..3
1.1.2 Consistent Visual Feedback ..3
1.1.3 Tool Support for Debugging ...4

1.1.4 Collecting Bug Reports ...4
1.1.5 Device Independence ...5

1.2 Research Objectives ...5
1.3 Document Structure ...6

CHAPTER TWO: RELATED WORK ..7

2.1 Application Frameworks ..7
2.1.1 Hardware independence ..7

2.1.2 Gesture Recognition ..9
2.2 Tools for Development and Testing Touch Interactions ...11

2.2.1 Device Simulators ...12
2.2.2 Test tools ...13

CHAPTER THREE: EXPLORATORY STUDY ..15
3.1 Review existing research in academia and industry ..15
3.2 Study existing touch based applications ..17

3.2.1 SmartUML ...18
3.2.2 AgilePlanner ..19
3.2.3 eGrid ..20

3.3 Exploratory user study on experienced multi-touch application developers21

3.3.1 Data Collection and Analysis ..22
3.3.2 Findings ...22

3.3.2.1 Testing Approach ...23

3.3.2.2 Limitations of the Simulator ..24
3.3.2.3 Testing Multi-User Scenarios ..25
3.3.2.4 Bringing Code to the Tabletop...25

3.4 Summary of Exploratory Study ...26

CHAPTER FOUR: THE GESTURE DEFINITION LANGUAGE28
4.1 The Objectives of GDL ..28

4.1.1 Separation of Concerns ..28

 vii

4.1.2 Flexibility ..29
4.1.3 Extensibility ...30

4.2 Implementation of GDL ...30
4.2.1 Language Design ...30

4.2.1.1 Hiding Low Level Complexities ..35
4.2.1.2 Flexibility ...36
4.2.1.3 Extensibility ...38

4.2.2 Language Parser ..42
4.2.3 Gesture Validation Process ..42

4.2.4 Integrated Development Environment (IDE) ..44
4.3 Summary ..47

CHAPTER FIVE: GESTURETOOLKIT ..48

5.1 Hardware Abstraction Layer ..49
5.2 Gesture Processor ..51
5.3 Core Component ..52

5.3.1 Data Queue ..52
5.3.2 Visual Feedback ..53

5.3.2.1 Touch Feedback ...53
5.3.2.2 Gesture Feedback ...54

5.4 Touch Recorder ..55

5.4.1 Storage Module ...56
5.4.2 Local Cache ...57

5.4.3 Remote Storage ...58
5.5 Automated Test Framework ..59

5.5.1 Asynchronous Test Environment ..60

5.6 Event Manager ...63

5.7 Summary ..64

CHAPTER SIX: TECHNICAL CHALLENGES ..65
6.1 Designing the Language ..65

6.2 Hardware independence with device specific support ...66
6.3 Extensibility ...67

6.4 Developer Expectations ...68
6.4.1 Productivity Tools ...68

6.4.2 Implementation details ..69

CHAPTER SEVEN: EVALUATION ...70
7.1 Data Collection ..70

7.2 Findings ...71
7.2.1 Findings from Task 1: Adding Resize Functionality71
7.2.2 Findings from Task 2: Record the Resize Touch Interaction72
7.2.3 Findings from Task 3: Writing Unit Test ..72

7.2.4 Findings from Task 4: Define a New Gesture using GDL73
7.3 Summary of Preliminary Evaluation ...73
7.4 Community Response ..74

 viii

CHAPTER EIGHT: CONCLUSION ..75
8.1 Thesis Contributions ..75
8.2 Limitation ...76
8.3 Future Work ...77

REFERENCES ..78

APPENDIX A: LIST OF PREDEFINED GESTURES ...84

APPENDIX B: ETHICS APPROVAL ..87

APPENDIX C: CO-AUTHOR PERMISSION ..92

APPENDIX D: ADDING NEW HARDWARE/DEVICE SUPPORT98

APPENDIX E: DEVELOPING THE BUBBLESPATH TOUCH FEEDBACK103

APPENDIX F: DEVELOPING THE HIGHLIGHTSELECTEDAREA GESTURE

FEEDBACK ...105

 ix

List of Tables

Table 1: Gesture Support in Different Application Frameworks 15

Table 2: Participants' Experience .. 21

Table 3: Feature comparison between a Simulator and an Actual Tabletop 24

Table 4: Example of primitive conditions .. 32

Table 5: List of primitive conditions available in GestureToolkit 32

Table 6: List of return types available in GestureToolkit ... 34

 x

List of Figures and Illustrations

Figure 1: Different types of multi-touch devices .. 1

Figure 2: Implementing a feature in a multi-touch application .. 2

Figure 3: SmartUML - a free-hand sketch-enabled multi-user UML designer 18

Figure 4: AgilePlanner on a large horizontal display ... 19

Figure 5: eGrid - a collaborative application for utility companies 20

Figure 6: An example of a tabletop application testing workflow 23

Figure 7: The structure of a gesture definition .. 31

Figure 8: the "Lasso" gesture to select multiple objects from a scattered view................ 35

Figure 9: Defining the lasso gesture using GDL .. 36

Figure 10: Sequence of touch strokes to create an "Actor" .. 37

Figure 11: Defining Actor gesture for Use Case diagram .. 38

Figure 12: The code snippet of GDL grammar for “Touch Step” primitive condition 39

Figure 13: Code snippet for the TouchState primitive condition validator 39

Figure 14: A code snippet of the GDL grammar to parse the return types 40

Figure 15: Data container class for SlopeChanged return type .. 41

Figure 16: The code snippet of the SlopeChanged calculator class.................................. 41

Figure 17: The workflow of gesture recognition .. 43

Figure 18: The execution process of primitive types .. 43

Figure 19: Syntax highlighting and integrated compilation support for GDL in Visual

Studio .. 45

Figure 20: Extending GDL from Visual Studio .. 46

Figure 21: On-the-fly error detection in IntelliPad IDE ... 47

Figure 22: Components of GestureToolkit Framework .. 48

Figure 23: Changing device/input source of the application .. 50

 xi

Figure 24: Example of a Touch Feedback .. 53

Figure 25: Code snippet to add touch feedbacks .. 54

Figure 26: The gesture feedback for the lasso gesture .. 54

Figure 27: GestureToolkit: Simulating multi-user touch interactions 56

Figure 28: An XML code fragment representing a part of a touch interaction 57

Figure 29: Internal Structure of Storage Manager .. 58

Figure 30: Internal Design of Remote Storage ... 58

Figure 31: Workflow of Automated Test Framework .. 60

Figure 32: Example unit test code using Touch Toolkit ... 62

Figure 33: User defined gesture validation code .. 63

Figure 34: The code snippet to subscribe "Zoom" gesture ... 63

Figure 35: The simplified architecture of gesture processor .. 64

Figure 36: The GestureToolkit Project website activity till October 2010 74

 xii

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

GDL Gesture Definition Language

API Application Programming Interface

DSL Domain-Specific Language

IDE Integrated Development Environment

1

1

Chapter One: Introduction

Within the domain of human computer interaction, touch has been considered an

interaction approach for an extensive period of time. Until recently however, it was

limited to recognizing single touch interactions such as selecting options or entering

numbers in kiosk systems in banks, stores, etc.: Touch was basically treated as a mouse

replacement. However, recent innovations in multi-touch devices, have initiated new

opportunities for computer interaction that are fundamentally intuitive and natural. As

these devices become increasingly affordable, it is essential to create new applications

and extend existing ones to support touch-based interaction.

Comparatively, multi-touch is a newer interaction technique, where different types of

touches including multiple fingers, hands or arbitrary tangible objects, can be used to

interact with a system. While research to find the most suitable multi-touch hardware

technology is ongoing, a number of devices are available that use different approaches to

support this form of interaction.

Figure 1: Different types of multi-touch devices

1.1 Multi-Touch Application Development

To utilize this newer medium of input in applications, developers will require support

from proper frameworks and tools. Currently, application developers predominantly use

software development kits (SDK) provided by hardware vendors that are hardware

2

2

specific. These SDKs provide the necessary infrastructure to communicate between

hardware and software as well as to some extent touch enabled user interface widgets.

However, they lack in many areas that are necessary to build a reliable and robust

application within an acceptable time frame that are discussed in the following sub-

sections.

Figure 2 shows the steps in the life cycle of implementing a feature in a multi-touch

application. Like most software development process, it starts at the design stage. Once

the interaction approach is decided, the developers start implementing it. Then, different

types of automated and manual testing processes are used to validate the implementation

to ensure quality of the software.

Figure 2: Implementing a feature in a multi-touch application

To understand the development process and requirements of gesture-based systems, we

studied existing touch based applications, research [22] [29] on gestures for multi-touch

surfaces and also interviewed experienced multi-touch application developers. The details

are explained in Chapter Three. From these exploratory studies and based on our own

experience, we found that developers are facing a number of challenges in developing

multi-touch applications which we discuss in the following sections:

•User Interface

•Touch Interactions
(Gestures)

Design

•User Interface

•Gesture detection

•Automated tests

Develop
•Device

compatibility

•Gesture detection

Validate

3

3

1.1.1 Tools to Define a Gesture

Depending on the features of a multi-touch device, a command may be triggered by

strokes, touches, whole hand interactions, tangible object interactions or even multiple

concurrent touches from different people. In this research, we primarily focus on simple

as well as complex finger based touch interactions. Application developers sometimes

need to develop gesture recognizers to support new gestures that are natural and

meaningful to the application context. Processing the raw touch interaction data provided

by the hardware into meaningful application-recognizable events sometimes involves

complex algorithms that become cumbersome when fine tuning is required. It has been

found that application developers and touch interaction designers are not generally

domain experts in gesture recognition [31]. As gesture recognition often involves

platform-specific, complex algorithms, this can represent a significant amount of work.

As a result, developers often select gestures based on implementation complexity instead

of usability.

1.1.2 Consistent Visual Feedback

Visual feedback is an important part for any multi-touch application. A feedback is

generally provided in the form of visual effects on the touch screen in response to touch

or gesture. While touch feedbacks are used for general response to any arbitrary touch,

gesture feedbacks are more specific to application commands. As devices from different

vendors often provide these feedbacks in different way, it becomes a challenge for

application developers to maintain consistency in user interface across devices from

different vendors.

4

4

1.1.3 Tool Support for Debugging

Like any other software, multi-touch applications also need to be debugged to fix a

problem. However, for multi-touch applications the developers often need an actual

device to do the debugging. These devices are generally expensive and often a team of

multiple developers get one device to work with. Also, the physical design of the device

(e.g. horizontal tabletop) is sometimes not best for long term development work. As a

result, developers need to go back and forth between the device and their development

computer every time they need to test a piece of code. Tools to simulate touch

interactions on the development computer could reduce the need to move between

devices to a great extent. A simulator can also help to simulate multi-user scenarios and

therefore reduce the need to additional users to test concurrency issues.

1.1.4 Collecting Bug Reports

Sufficient technical detail is essential for fixing any software defect. For most multi-

touch applications, touch is the key interaction medium. The way a person uses finger

based gestures could depend on his/her background (e.g. style of the written form of their

first language, left or right handed). The best way to determine why a particular touch

was not recognized by the gesture recognizer is to run that same touch interaction through

the step by step debugging process. But due to the lack of necessary tools the developers

currently rely mostly on user comments which make the fixing process much difficult. A

tool to record the interaction as part of a bug report could greatly simplify the process of

fixing this sort of problems.

5

5

1.1.5 Device Independence

Multi-touch interactions [33] were initially developed in the early 1980‟s. Since then a

number of different technologies have been introduced by different industrial and

research labs. Hardware vendors provide different multi-touch devices with similar

features that are driven by different technologies. Due to a lack of standards in the field,

these hardware vendors often end up implementing the device-to-software

communication systems differently. As a result, applications sometimes become so

dependent on a particular device that the developer needs to rewrite significant portions

of their application to make it compatible for another device. For example, an application

developed for the Microsoft Surface using their SDK, will not work on other devices like

a SMART Table.

1.2 Research Objectives

This thesis focuses on finding the challenges of developing multi-touch applications and

possible ways to reduce the complexities of development and testing touch based

applications. Two of the goals of this research are:

 Design a domain-specific language to simplify the process of defining new

gestures, and

 Develop a device independent application framework for multi-touch applications

that supports the gesture definition language and provides:

o consistent visual feedback across devices

o tools for debugging touch interactions

o framework for automated testing

6

6

To address the research goals, a gesture definition language (GDL) is designed as part of

this research which allows defining multi-touch gestures including multi-user and multi-

step scenarios. The details are described in Chapter four. A framework, GestureToolkit, is

developed to address the research goals for reducing a number of development challenges

and to implement the GDL.

1.3 Document Structure

The reminder of this document is structured in the following chapters:

Chapter Two: Related work - takes a detailed view at related fields of research and the

existing work within them.

Chapter Three: Exploratory Study - describes the study used to collect the requirements

including study of related research work, existing multi-touch applications and interviews

with experienced multi-touch application developers.

Chapter Four: The Gesture Definition Language - describes the design and structure of

the domain-specific language for defining gestures.

Chapter Five: GestureToolkit - gives an overview of the implementation details including

the language design and implementation of the features of GestureToolkit.

Chapter Six: Technical Challenges - discusses the technical challenges we encountered

throughout this research starting from design decisions to implementation choices and

adaption of tools to ensure future sustainability of the project.

Chapter Seven: Evaluation - describes the process and results of the user study on

GestureToolkit framework and the gesture definition language.

Chapter Eight: Conclusion - provides a summary of contribution, the limitations and

future plan for this research and the open-source project – GestureToolkit.

7

7

Chapter Two: Related work

Multi-touch is a technology where both the hardware and the software platform are still

evolving at a great pace. While the hardware support is essential, the right application is

also a driving factor to bring meaning for these devices to general people. In this chapter,

we describe the existing work on supporting tools and frameworks for multi-touch

applications. The related works are categorised into two sections: a) application

frameworks, and b) tools for development and testing. Application frameworks help to

reduce the development complexities by abstracting the low level implementation details

behind the high level application programming interfaces (API). While these frameworks

also help developers build applications faster by providing reusable components, tools

like device simulators can simplify the process of development and testing in many ways.

2.1 Application Frameworks

Frameworks are software libraries that provide reusable abstractions of code wrapped in a

well-defined Application programming interface (API). Our GestureToolkit is a

framework for multi-touch applications. It decouples the actual hardware from the

application by providing a hardware abstraction layer. This layer includes a hardware

agnostic interface for capturing multi-touch inputs. The framework also provides a

domain-specific language to define gestures. In this section, we compare our work with

existing work on hardware independence and gesture recognition systems.

2.1.1 Hardware independence

Multi-touch devices often require developers to write device specific implementations

because of the differences in underlying hardware and vendor specific software

development kits (SDKs). However, one possible way to achieve platform independence

8

8

is through abstracting the communication interface between the actual hardware and the

application. We need this hardware independence to reuse the same multi-touch

applications across different devices.

While the tabletop hardware vendors provide tool support for the development and

testing of tabletop applications specific to their device, they are not interoperable; as a

result the applications developed using these SDKs cannot be readily used on other

platforms. For example, Microsoft Surface provides an SDK for developers to simplify

the touch-related development complexities like managing concurrent touch points, touch

friendly widgets, components to detect special tags, and the like. Similarly, SMART

Technologies provides an SDK for their multi-touch devices. However, the widgets and

other features provided by these SDKs only work on their devices.

Echtler [8] provided an abstract architecture design and an implementation thereof to

improve the interoperability of multi-touch applications among various devices. It has an

interpretation layer that decouples the hardware specific inputs from the software

application code. Several other projects also provide tool support for abstracting multi-

touch interactions. For an example, PyMT [10] is a framework for rapid prototype

development of multi-touch applications. It provides consistent low level touch data to

the application widget layer from different touch devices. Pointer [11] also proposed a

hardware abstraction approach. Touchlib [9] is a library for capturing images and

processing data from frustrated total internal reflection (FTIR) based devices. It provides

basic events like finger down, finger up, and finger move.

In GestureToolkit, we have a similar approach as PyMT and Pointer in the device

abstraction part. The hardware abstraction layer provides an extensibility framework that

9

9

allows adding support for new devices. Applications developed on top of GestureToolkit

will run on these new devices without any change in the application code. GestureToolkit

also allows connecting multiple devices at the same time including virtual devices to

simulate touch interactions.

2.1.2 Gesture Recognition

The motion of meaningful touches to interact with the system is called a gesture. A

gesture may include touches of multiple fingers, hands and arbitrary tangible objects.

Recent versions of the widely used operating systems are providing native support for

touch based gestures. For an example, Microsoft Windows 7 supports Zoom, Pinch,

Rotate and some other gestures out of the box. Mac OS Snow Leopard also provides

gesture support to some extent. However, this operating system level support can only be

utilized if there is a device driver, which is not yet available for all touch enabled devices.

For an instance, to use the Windows 7 Touch API on Microsoft Surface one will need to

write a device driver, as it is not available yet. Also, developers need to handle operating

system specific differences for cross platform applications. SDKs for specialized multi-

touch devices like the Microsoft Surface SDK [39] provides gesture recognition for a

small set of gestures; however, the gestures are hardcoded into the system and are often

embedded inside widgets. Therefore, developers need to write recognition algorithms

from scratch to implement any new gesture.

The challenge of implementing gesture recognition system is a well-known problem in

the research community. Significant amount of research has already been done in the area

and also researchers are actively working on improving gesture recognition systems. We

discuss them in the following sections.

10

10

Wobbrock [12] proposed a gesture recognition system that recognizes gestures by

comparing them with base templates. An advantage of this approach is that it allows the

definition of new gestures by adding additional templates. This approach, however, has a

number of limitations. For example, it cannot detect gestures in a continuous motion

stream and only gestures with explicit start and end points can be processed. Also, it

cannot recognize gestures that are based on rules on touch movements instead of fixed

touch patterns (e.g. rectangle or circular shaped stroke) saved in templates.

Kartz [13] proposed another approach that relies solely on simple trigonometric and

geometric calculations. His approach requires considerably less training data than some

other recognizers. However, it suffers from limitations like smaller gesture vocabulary

size and it cannot process gestures with continuous motion.

The Hidden Markov Model (HMM) is a statistical model that is often used in sketch

recognition. Sezgin [14] proposed an HMM-based sketch recognition system that was

motivated by static and dynamic characteristics of sketches. Cao [15] also used a HMM

to present an evaluation of a hybrid gesture interface framework that combines online

adaptive gesture recognition with a command predictor. Anderson [16] proposed sketch-

based symbol recognition using a HMM, but false positives are an unavoidable aspect of

this approach.

Interaction designers are not generally domain experts in gesture recognition [42]. To

simplify the process, there are a number of frameworks and toolkits available for pattern

and gesture recognition, such as Weka [43] and GT2K [44]. While these are mostly

libraries of techniques, tools are also available for designing gestures such as MAGIC

[45] and quill [46]. MAGIC uses recorded data as samples and quill also uses recorded

11

11

data for training purpose. Although the recording feature greatly simplifies this for a set

of single touch gestures, multi-touch gesture are often based on certain gestural condition

(e.g. lasso gesture, five-finger-select and drag) that are not possible to define by sample

dataset.

To address the limitations of existing gesture recognition systems, GestureToolkit

provides a gesture definition language that includes multi-user, multi-touch and multi-

step gestures. This also allows the developers to easily test different steps of the gesture

recognition process and edit them as necessary.

2.2 Tools for Development and Testing Touch Interactions

The right set of tools is essential to ensure the quality of the software developed within a

reasonable amount of time. Unlike traditional software that runs on standard computers,

multi-touch applications are generally developed for special devices. However,

developers mostly use their desktop computers to develop these applications which

generally don‟t have the touch capability. As a result, to test the application being

developed, they need to move between the development machine and the actual device

back and forth. Also, manually testing the features every time something has been

changed is both time consuming and resource intensive. Device simulators can provide

the option to test multi-touch applications from non-touch enabled systems to a great

extent and tools to automate the testing process can also help to ensure quality of the

software. We discuss the existing work on these related areas in the following sub-

sections.

12

12

2.2.1 Device Simulators

The Microsoft Surface SDK provides a record and playback tool that allows developers

to test their applications using recorded touch interactions. However, this tool can only be

used for applications that are built using the Microsoft Surface SDK as it only works

inside their simulator or on an actual Microsoft Surface device. Although the tool

provides a recording feature that helps the manual tests to some extent, it does not

provide any support for using those recordings in automated tests. Pointer [11] also

proposed a record and replay based automated testing approach.

DART [47] is a tool that uses the capture/replay concept to simplify the process of

working with augmented reality. It allows designers to specify complex relationships

between the physical and virtual world and allows designers to capture and replay

synchronized video and sensor data to work off-site and to test specific parts of their

experience more effectively. FauxPut [48] is another testing tool for interaction designers

that can wrap input device APIs and provide an interface for recording, simulating and

editing inputs for recognition based interactions. It also allows creating simulation of

sensor data along with other actual device data in parallel.

Mouse 2.0 [5] or toolkits like Multi-Mice [6] and Multi-Touch Vista [1] can add the

ability to use multiple pointers in regular computers to simulate touch points to some

extent. However, a problem with this approach is that you can only simulate two moving

touch points at a time through mice. OpenInterface [56] also provides a similar

environment to work with simulated components from a component repository (e.g.

speech recognition, video ``finger tracker'').

13

13

GestureToolkit follows a similar approach with an extension that it allows developers to

debug and write automated tests of applications independent of the underlying hardware.

This also allows simulating multi-user scenarios using multiple recorded interactions and

helps to overcome the need of an actual device to a great extent.

2.2.2 Test tools

Although not directly applicable to tabletop applications, there is tool support available

for automated testing of traditional mouse and keyboard based user interfaces (UI). For

example, CodedUI Test [49], Project White [50], Selenium [51] and QFTest [52] are used

to automate UI testing of regular desktop and web applications. Some of these tools

follow a record and replay based test automation while others rely on a programmatic

approach only. Although these tools and most other UI testing tools can automate the UI

events from mouse and keyboard, we haven't seen a test automation tool that works for

touch inputs even though the underling operating system (i.e. Windows 7) natively

provides the support.

While large scale multi-touch devices are fairly new and still mostly used for research

purposes, smaller handheld multi-touch devices like smart phones and other portable

devices are quite common to general people. Froglogic [53] is working on Squish - an

automated graphical user interface (GUI) testing tool for different platforms including

Apple's iPhone and iPad to support the testing of Cocoa Touch [54] applications. Vimov

[55] provides another multi-touch testing tool for iPhone and iPad applications. It can

simulate device features through another device like using an iPhone as a multi-touch

controller for Apple's iPad simulator. Although these tools help the testing of handheld

14

14

multi-touch devices, we cannot use them for automated testing of large tabletop

interfaces.

However, GestureToolkit also has a virtual hardware simulator similar to OpenInterface

to simulate actual device inputs for testing and debugging multi-touch applications. This

also provides a unique feature for continuous integration (CI) systems to run automated

test scripts to validate gesture detection without actually running the application on a

physical device or simulator.

15

15

Chapter Three: Exploratory Study

An exploratory study was conducted to assess the problem domain. This study consists of

three sections: 1) review existing research work in academia and industry, 2) study some

existing touch based applications to understand their requirements, and 3) conduct a

semi-structured open-ended interview with experienced multi-touch application

developers. These three sections are described in the subsequent sections. The result of

this study is used to set the requirements of GestureToolkit.

3.1 Review existing research in academia and industry

Research labs in universities and software industries are actively investigating possible

interaction techniques for multi-touch surfaces. To better understand the requirements of

multi-touch applications, we studied the results of C. North‟s [22] and J. O. Webbrock‟s

[29] research on multi-touch manipulation and user defined gestures for surface

computing. Then we compared the list of useful gestures with the supported gestures

from some of the popular multi-touch application frameworks like Windows Presentation

Foundation (WPF), Microsoft Surface SDK and GestureWorks – a multi-touch

framework for Flash based applications. Table 1 shows the summary of our findings.

Table 1: Gesture Support in Different Application Frameworks

Action Gesture Multi-touch application frameworks

WPF 4.0 Microsoft

Surface SDK

GestureWorks

Select Tap * * *

Lasso

16

16

5-finger select

Tap and hold * * *

Rotate 2 finger rotate * *

1 finger rotate *

Move Drag * * *

 Jump

 Drag hand

 Drag corner *

 One hand shove

Scroll Two finger

scroll

 *

 One finger

scroll

*

Cut Slash

Duplicate Tap source and

destination

Delete Drag off screen * * *

accept Draw check

reject Draw „X‟

Undo Scratch out *

Enlarge Pull apart with

hands

17

17

 Pull apart with

finger

* * *

 Pinch * * *

 Spray fingers

Open Double tap * * *

From the comparison, we found that many of the useful gestures are not support by the

frameworks out of the box. While some of these gestures may be useful for few specific

types of applications, but when application developers do need to recognize these

gestures they often either end up implementing them from scratch or choose to use other

alternative gestures and therefore compromise on application usability. In one of the case

studies (i.e. AgilePlanner), we have seen that the developer didn‟t provide the gesture that

would be most meaningful and natural to the application context due to lack of gesture

recognition support from the framework. We discuss these case studies in the following

section.

3.2 Study existing touch based applications

We choose three touch based applications that use touch as a primary input system. In all

three cases, the predefined gestures that are available in Windows Presentation

Foundation were not sufficient. The developers had to implement gesture recognition

modules to support new gestures that are most appropriate to the application context.

These applications are: 1) SmartUML, 2) Agile Planner and 3) eGrid. The details of each

application are described in the following sections:

18

18

3.2.1 SmartUML

SmartUML [3] is a free-hand sketch-enabled multi-user UML Diagram designer. It offers

natural freehand drawing with pen interface and on-the-fly drawing detection. The tool

currently supports Use Case, Class Diagram and Activity Diagram.

Figure 3: SmartUML - a free-hand sketch-enabled multi-user UML designer

SmartUML is an open source project hosted at sourceforge.net. It uses custom gesture

recognition algorithms which includes detecting various geometric shapes and

intersections of multiple shapes in a certain logical sequence. After successful gesture

detection, the application layer requires the position, size and often the bounding box of

the gesture to place the appropriate object on the screen.

19

19

So, a gesture definition language that allows defining touch interactions that represents

different geometric shapes in a certain structure could have simplified the development

process to a great extent.

3.2.2 AgilePlanner

AgilePlanner [2] is a rich client based on the .NET/WPF framework that supports vertical

displays as well as digital tabletops. It supports synchronous distributed planning

meetings by providing a shared workspace for creating, organizing and editing electronic

index cards. Changes made by one team member become visible immediately on

connected clients all over the world.

Figure 4: AgilePlanner on a large horizontal display

While the developer used a custom gesture recognizer to detect straight lines, for the rest

of the touch interactions he chose to use the predefined gestures available in the Windows

Presentation Framework. As a result, the application did not provide the gestures that

would be most useful in some cases. For example, to move tasks (the red and yellow

rectangles) to a specific iteration (the large blue rectangle) a user has to drag one object at

a time. The user can at most drag two items in parallel as the device supports maximum

20

20

two concurrent touch points. However, with the ability to easily define new gestures, the

developer could incorporate the lasso gesture to select multiple tasks with one gesture

and move all selected tasks to the desired iteration using one more touch.

3.2.3 eGrid

eGrid is a collaborative application for utility companies to faciltate the collaboration of

control center team members in their daily tasks. In addition to application specific

gestures, another requirement of eGrid was to support multiple hardware platforms. The

first version of the application was developed using Microsoft Surface SDK. As a result,

it was too dependent on Microsoft Surface and it could not support other devices like

Dell XT tablets or the SMART tabletop which was also part of the requirement. Some

other differences between these devices include inconsistent visual feedback. For

example, Microsoft Surface provides different visual effects than Dell XT (Windows 7

based system) in response to touch input; and SMART tabletop leaves this for the

application and does not provide any visual feedback.

Figure 5: eGrid - a collaborative application for utility companies

21

21

The second version of eGrid is currently being developed and is using the GestureToolkit

framework; it now supports multiple devices including Microsoft Surface and Dell XT2

tablets. It also uses the GDL to define custom gestures (e.g. lasso).

3.3 Exploratory user study on experienced multi-touch application developers

We interviewed 3 participants who developed tabletop applications in a university lab

environment. All participants had prior software development experience and more than

one year of tabletop application development experience. The participants were from the

same lab where the toolkit was developed but they had not used the toolkit before this

study. We refer to those participants as P1, P2 and P3. Table 2 provides a summary of

their experience levels.

Table 2: Participants' Experience

Participant # of Tabletop Apps. Years of Tabletop

Experience

Years of

Development

Experience

P1 2 1 5

P2 3 2 8

P3 1 1 3

P1 developed GIS-based tabletop applications with an industry partner. P2 developed a

multi-player table-based game and P3 developed and maintained an existing collaborative

tabletop application. Both P1 and P2 developed software for the Microsoft Surface and

P3 developed software for SMART tables.

22

22

3.3.1 Data Collection and Analysis

Each participant was interviewed independently for 25 minutes. The interviews were

semi-structured and organized around three main topics. During the interviews each topic

was introduced using starter questions:

 Please tell me how you tested your application.

 Is there anything that was difficult to test?

 How did you test multi-user scenarios?

Each interview was audio-recorded and transcribed for analysis. Our analysis involved

two stages. In the first stage we performed open coding on the transcribed data. Open

coding is an analytic process to identify concepts in the collected data [35]. In the second

stage of our analysis, we grouped the coding into five categories that capture the main

challenges our participants faced.

3.3.2 Findings

The following discussion of our findings is organized around the five categories that

emerged as we analyzed our study data.

Figure 6 shows the tabletop application testing workflow. This example workflow

demonstrates that the developers carry out their debugging at two different locations, i) at

their workstations using the simulator and ii) at the actual table (the shaded region in the

figure). This process is described by P1 in the following response:

“I usually used the simulator to test only the initial test to see how it looks like. Then I

had to move it to the actual hardware and then test it because the experience is much

different”.

23

23

Figure 6: An example of a tabletop application testing workflow

This workflow indicates that the testing and debugging effort is increased when working

on tabletop applications because the developers need to move between their workstation

and the actual hardware and perform repetitive testing.

3.3.2.1 Testing Approach

Although all participants of this study used automated unit tests to automatically verify

their application logic, none of them used any automation for testing the tabletop

interfaces. In fact, none of the participants were even aware of any automated testing

tools. As a result they spent a considerable amount of time on manual regression testing,

which involves carrying out the same tests over and over again. This was particularly

time consuming for participant P3 who was developing an application for two different

tabletop devices with different physical sizes. So, P3 had to manually test on both tables

whenever there was a significant change in the application.

24

24

3.3.2.2 Limitations of the Simulator

Tabletop hardware vendors often ship device simulators. Although these simulators can

mimic the hardware on a standard PC to some extent, the developers still run into issues

as a result of differences between the simulator and the actual tabletop. For example, in

response to a question on the difference between testing alone at the workstation and with

multiple users at the tabletop hardware, participant P1 mentioned the following:

“... if you are trying to create a new window, you can't do it more than once at the same

time because you have only two hands (two mice at the simulator). So if two people are

trying to test at the same time (on the actual hardware) maybe they will check

occurrences like doing this at exactly the same time.”

Table 3: Feature comparison between a Simulator and an Actual Tabletop

Feature Microsoft Surface

Simulator

Microsoft Surface

of touches # of Mice 52+

Physical objects Limited Almost any shape

Sensitivity Mouse is very Precise (300-

800 DPI)

fat-finger Finger is less

Precise

of Testers # of Mice More than one

Physical orientation Vertical Horizontal

Table 3 summarizes the key differences between these two environments (in this case the

Microsoft Surface Computer and the Microsoft Surface Simulator). From the above table

25

25

we see that the simulator supports a limited capability multi-touch and multi-user

environment compared to the target tabletop. As a result, a significant amount of testing

and debugging work needs to be carried out on the actual table, especially when complex

concurrent interactions need to be considered.

3.3.2.3 Testing Multi-User Scenarios

Multi-user scenarios typically involve a large number of possible concurrent interactions

by different users on the same interface. Manually testing such interfaces require multiple

users, which is an often difficult to find every time a feature needs to be tested.

For an example, P3 mentioned a multi-user scenario that he developed where multiple

users could vote by placing a tap � gesture on a specific interface element. He prepared the

test plan to test for the following scenarios: 1) single user votes, 2) multiple users vote

sequentially and 3) multiple users vote concurrently. However, multi-user interactions

can go beyond a single interaction on a single element. In that situation, manual testing

becomes even harder as there is an explosion of possible states.

Multi-user scenarios often introduce unseen performance issues as well. P2 and P3

mentioned that at times they experienced severe performance degradation when multiple

users were concurrently using their systems. But a single developer or tester, when doing

manual testing can only explore a limited set of possible concurrent scenarios.

3.3.2.4 Bringing Code to the Tabletop

In most development teams that our participants worked in, digital tables are shared by

multiple developers. As a result, developers typically need to move code between their

PC and the shared tabletop so that they can test the features in the target environment.

Our study participants use source code repositories or USB memory sticks as

26

26

intermediate storage between the two environments. This process of going through an

intermediate medium slows down the familiar workflow of the develop-debug-develop

cycle. Also, it requires developers to commit untested code to the shared repository,

which often breaks a working build. As P1 mentioned:

(The process of transferring code to the table) is not comfortable because sometimes you

make some changes but you are not confident to commit it, as it's not a final change.

Participants P1 and P3 mentioned that developing on the tabletop with an additional

vertical display was faster as the outcome of the work could be loaded and debugged

immediately. To boost productivity, we recognize that it is important to provide

developers with tools so that they can get immediate feedback about their work-in-

progress code.

3.4 Summary of Exploratory Study

Based on the results of comparison between the list of useful gestures for multi-touch

surfaces [22] [29] and predefined gestures available in existing multi-touch SDKs, we see

that a significant number of gestures are not available out of the box. However, the

requirements of gestures also depend on the application context. As there is a wide range

of possibilities for multi-touch applications, it may not be practical for a framework to

provide every single gesture predefined out of the box. Instead, a domain-specific

language to define custom gestures is a more appropriate solution. Our study on several

multi-touch applications (section 3.2) also supports the fact that applications often need

gestures that are not available in existing SDKs. It also suggests that developers often

need to build applications for devices that provide similar feature but may come from

different vendors with minor variations. As a result, developers need an application

27

27

platform that would work across multiple devices and provide consistent visual

feedbacks.

The findings of semi-structured interview with experienced multi-touch application

developers show that tools for automated testing and simulating touch interactions

including multi-user scenarios could significantly simplify the development process.

Based on our own experience, we believe a tool to capture touch interactions and later

use them in debugging would also help developers fix application defects.

28

28

Chapter Four: The Gesture Definition Language

The results of the exploratory study shows that developers often need to define new

gestures that are not available in existing application frameworks out of the box. To

simplify the process of defining new gestures, we present the gesture definition language

(GDL) that hides low level implementation complexities from application developers

without compromising the flexibility of gesture definitions. The design of the language

focuses on the following four goals:

 Separation of concerns,

 Flexibility,

 Extensibility, and

 Independence from hardware.

GestureToolkit, the underling framework that compiles and executes the gesture

definitions defined using GDL, decouples the hardware specific issues from rest of the

system. The internal design and implementation details of GestureToolkit are described

in the next Chapter. We discuss the first three objectives of the language and how they

are implemented in the following sections.

4.1 The Objectives of GDL

GDL is a domain-specific language designed to streamline the process of defining

gestures. In this section, we describe the objectives of the gesture definition language as

mentioned above.

4.1.1 Separation of Concerns

Associating system commands with gestures is an important part of developing multi-

touch applications. At present, application developers not only write application specific

29

29

code but often also need to write the gesture recognition modules that recognize a gesture

from raw touch data. Gesture recognition is a complicated process that is often hard to

fine tune and requires special background knowledge. As a result, developers either

spend a significant amount of time to implement the correct gesture, or select a gesture

that is easy to implement. In essence, application developers make compromises on an

application‟s usability.

A domain-specific language (DSL) for defining gestures can hide the low level

implementation complexities by encapsulating complex mathematical calculations,

pattern recognition algorithms and the like. This can help the developers focus on

designing the gesture at a higher level without worrying about the implementation details.

4.1.2 Flexibility

A specially designed DSL for gestures can help developers focus on application design

instead of low-level gesture complexities. However, it should also ensure that it provides

the necessary flexibility to define the gesture that is meaningful to the application

regardless of its complexity. The language should also allow gestures that may depend on

device specific features (i.e. user identification, pressure sensitivity). Another important

part of a gesture definition is to prepare the results when the gesture is detected. Some

gestures need only the touch position (i.e. tap), whereas others need more detailed

information like the boundary of an arbitrary shape drawn by the gesture (i.e. lasso),

direction of the finger (i.e. one finger drag), etc. The language should provide options to

define new return types as necessary.

30

30

4.1.3 Extensibility

Researchers are actively working on finding the best technology for multi-touch

interaction. While existing technologies such as diffuse elimination, frustrated total

internal reflection (FTIR) and capacitive touch are widely becoming available to

consumers, new technologies continue to emerge in the research arena. For example,

“UnMousePad” [32], a flexible and inexpensive multi-touch input device that provides

data on touch pressure in addition to touch position. As new technologies are discovered,

the language should provide the infrastructure to add new features without affecting the

existing applications.

4.2 Implementation of GDL

The objective of the language is to provide a high level framework for application

developers to define new gestures that will hide the low level implementation details

without compromising the flexibility of gesture. The development process can be divided

into following four parts:

(1) design of the language,

(2) the language parser,

(3) execution process, and

(4) support for integrated development environment (IDE).

The subsequent sections describe each of these key parts in detail.

4.2.1 Language Design

Figure 7 shows the structure of a gesture definition in GDL. The gesture definition

contains three sections: a name that uniquely identifies a definition within the application;

31

31

one or more validate blocks that contain combination of primitive conditions; and finally

the return block that contains one or more return types.

Figure 7: The structure of a gesture definition

The name must be unique within the scope of the application. GDL is part of

GestureToolkit that provides a set of commonly used gestures including zoom, drag,

rotate, lasso, flicks in different directions, geometric shapes, and so on out of the box.

The full list of predefined gestures available in GestureToolkit is listed in Appendix A. If

a developer wants to override any of the predefined gestures, they may use the same

name. The compiler will override the predefined gesture with their defined gesture.

However, if the user mistakenly defines two gestures with the same name, the compiler

will throw an exception message.

The validate block contains the logic for evaluating raw touch data to detect a gesture.

The logic is defined using a combination of primitive conditions, the smallest units to

evaluate raw data provided by the hardware abstraction layer.

Primitive conditions can be of different types. Table 4 shows some examples of primitive

conditions that can be used to define a pattern of touch points movement (No.1), the

range of touch points allowed in the specifying gesture (No.2), and a geometric condition

between two previously recognized partial results of a multi-step gesture (No.3). There

are currently 11 primitive conditions available out of the box. Table 5 shows a detailed

32

32

list all primitive conditions available in GestureToolkit. Developers can also create their

own primitive condition (which is described in section 4.2.2) and thereby extend the

GDL based on their requirements.

Table 4: Example of primitive conditions

No Primitive Condition

1 Distance between points: increasing

2 Touch limit: 1..4

3 line1 perpendicularTo line2

Multiple primitive conditions are virtually connected like a chain using the logical

operators (i.e. and). The validation process follows a lazy evaluation approach where it

starts from the first primitive condition in the chain and it only passes the valid data set

(or multiple possible sets) to the next condition in the chain. This allows the system to

improve performance by realigning the elements of the virtual chain without breaking the

logic. When multiple validate blocks are defined, the compiler considers each block as a

step in a multi-step gesture and performs the validation in the order it is defined.

Table 5: List of primitive conditions available in GestureToolkit

Primitive

Conditions

Syntax Description

Closed loop Closed loop

Returns the set of touches that represents a

closed loop.

Not closed loop

Distance Distance between Returns the set of touches where the

33

33

between points points: 1..10

distance between touch points are within

the specified range

Distance between

points: unchanged

10%

Returns the set of touches where the

distance between touch points are

unchanged to a give threshold. For

example, in this case 10% change in

distance is acceptable.

Distance between

points: increasing

Returns the set of touches where the change

of distance between touch points is

following a pattern. The possible patterns

are: increasing and decreasing.

Enclosed area Enclosed area:

100..300

Returns the set of touches where the

enclosed area of the touch-paths is within

the specified range. The default unit is in

pixel.

On same object On same object

Returns the set of touches that are on the

same object.

Touch area Touch area: Rect

50x50

Returns the set of touches that are within

the specified area. The default unit is in

pixel.

The shapes of the area can be of three types:

Rectangle (Rect), Circle or Ellipse

Touch path

length

Touch path length:

100..200

Returns the set of touches where the length

of the touch path is within the limit. The

default unit is in pixel.

Touch shape Touch shape: Line Returns the set of touches that represents

the specified shape

It currently supports line, rectangle and

circle shape.

34

34

Touch step Touch step: 2

touches within 1 sec

Returns the set of touches that occurred

within the specified time window. The

default unit is in pixel. The primitive

condition supports both second and

millisecond units.

Touch limit Touch limit: 1..4 Returns the set of touches within specified

limit. In case of more active touches, it will

return different combination of touch points

with the size specified.

Perpendicular

to

L1 perpendicularTo

L2

Returns the set of touches if they intersect

perpendicularly.

The last section in a gesture definition is the return block. Users can specify any number

of return types. Each of the return type is linked to a return type calculator. The runtime

gesture validation engine passes the final set of valid touch data to each of the return type

calculators and finally sends the results to the application layer through a callback event.

The common return types including touch position, bounding box, direction, unique id

(when supported by hardware), rotation and many more are predefined out of the box.

Like primitive conditions, return types are also extensible. Table 6 shows the list of all

available return types in GestureToolkit out of the box.

Table 6: List of return types available in GestureToolkit

Return type Description

Bounding box Returns the smallest rectangle (aligned to the X and Y

axis) that can bound the selected touches

Distance changed Returns the amount of distance changed since last event

35

35

Info Returns the message specified in definition

Slope changed Returns the angle of slope changed (in degree)

Touch actions Returns the last touch actions of selected touches

Touch Ids Returns the unique identifies of the selected touches

Touch paths Returns the paths (as an array of points) of the selected

touches

Touch points Returns the last points of the selected touches

We now describe how GDL addresses some of the key issues of multi-touch application

development including defining new gestures and extending the language to support

additional features.

4.2.1.1 Hiding Low Level Complexities

Let‟s consider a scenario where a user may use a lasso gesture (Figure 8) to select some

objects from a scattered collection of objects.

Figure 8: the "Lasso" gesture to select multiple objects from a scattered view

Implementing this gesture from scratch means processing the raw touch inputs that

mostly contain the position and order of touch points. Thus, the developer needs to write

code to check the following conditions at a very low level:

 Is this the last action of current touch stroke? The gesture should be evaluated

when the touch stroke ends.

36

36

 Does the collection of points in the specific touch stoke represent a closed loop?

 Is the area of the bounding box and the length of the path within a certain limit?

 Is the area of the arbitrary shape created by the enclosed path within a certain

limit?

 Only one touch should be involved in this gesture. If multiple active touch points

are available then it should consider each point individually.

Some of the validation logic like the calculation of the area of an arbitrary shape could

involve complex mathematical equations and requires proper testing. Figure 9 shows the

GDL code to detect the lasso gesture using the above logic. Implementing this from

scratch not only requires a lot of development time, but also additional time to test

various possible user scenarios.

Figure 9: Defining the lasso gesture using GDL

Also, the order of condition validation can significantly affect the overall performance of

the system. For example, it is quite simple to check the state of the touch action compared

to calculating the enclosed area of an arbitrary shape. The GDL compiler can internally

reorganize the order of condition validation, to improve performance.

4.2.1.2 Flexibility

Hiding low level implementation details can give the desired simplicity and improve

productivity of developer. However, it should also provide the necessary flexibility to

37

37

define gestures of various requirements. Let‟s think about a scenario where a gesture may

be composed of touches in multiple steps. For example, in a UML designer tool (i.e.

Smart UML 78[3]) the user would do the following touches to create an “Actor” object.

Figure 10: Sequence of touch strokes to create an "Actor"

This means the developer not only needs to detect a gesture of certain characteristics, but

also keep track of history to use the results of partial validation for later use. These multi-

touch scenarios may involve multiple users and some of these partially validated results

could end up representing different gestures too.

To address this issue, GDL provides the syntax to define validation in multiple steps, as

well as the storage of partial results for later use. The preceding code snippet (Figure 11)

defines the actor gesture. The intermediate results of the first and second steps are stored

in variables defined using the “as” keyword. These variables can also store multiple

partial results if necessary.

38

38

Figure 11: Defining Actor gesture for Use Case diagram

4.2.1.3 Extensibility

Multi-touch devices are evolving at a great speed. Until just recently, devices were

mostly providing touch points and user identification for some specific devices [19]. Now

some devices can provide touch directions (e.g. Microsoft Surface) and information about

the pressure of a touch [21]. The extensibility framework of GDL allows creating new

primitive conditions as well as return types to extend the language with additional

recognition algorithms and device features.

The process of adding a new primitive condition can be described in two steps. First,

update the language grammar that is used to parse the code. Figure 12 shows a code

snippet of the grammar that is responsible for parsing the “TouchStep” primitive

condition.

39

39

Figure 12: The code snippet of GDL grammar for “Touch Step” primitive condition

Then, create a validator that takes raw touch data as input and does the validation. A class

implementing the IPrimitiveConditionValidator interface written in any .NET

supported language can contain the computation logics.

Figure 13: Code snippet for the TouchState primitive condition validator

Figure 13 shows a code snippet for the TouchState. The Init() and Validate() are

the most important methods that need to be implemented for any new primitive type. The

40

40

gesture processor sends any parameters specified in the gesture definition to the Init

method when the class is instantiated at runtime. It is this methods responsibility to

persist the data for later use as necessary. Then the gesture processor sends the raw touch

data to the Validate method for processing and also captures the return values from this

method to pass the valid set of touch points to the next primitive condition as specified in

the gesture definition.

Similar to primitive conditions, the return types can also be added in the language. Figure

14 shows the GDL grammar that is responsible for parsing the return types from the

gesture definition. The highlighted area in the figure shows how the “Slope changed”

return type is defined in the grammar.

Figure 14: A code snippet of the GDL grammar to parse the return types

Each return type refers to two classes defined in framework. These classes can also be

defined in any of the .NET supported languages as long as they implement the required

interfaces. First, SlopeChanged is the class which carries the calculated values for the

return type. Client applications receive an instance of this class when the appropriate

gesture is invoked.

41

41

Figure 15: Data container class for SlopeChanged return type

Next is the calculator class which is responsible for doing the calculation using the final

set of touch points. It stores the result into the data class as mentioned above and then

passes the data object to gesture processor. Figure 16 shows the calculator class for the

SlopeChanged return type.

Figure 16: The code snippet of the SlopeChanged calculator class

42

42

4.2.2 Language Parser

The language parser uses an MGrammar [41] compiler to parse and build the abstract

syntax tree (AST) from the user-defined GDL. Developers can use it from the command

line or Visual Studio extension so that whenever the application is compiled, the

language parser will also run and compile the gesture definitions. If an error occurs, a

notification is provided via a console message.

The parser uses the API provided by Microsoft to parse and generate the AST from

gesture definitions using the syntax rules defined in the language grammar. Next, the

MGraphXamlReader [34] library dynamically instantiates the .NET classes to build the

object model from AST nodes. Then, the object model is serialized in java script object

notation (JSON) format and saved into the application deployment directory as an

embedded resource so that the framework can directly load gesture definitions at runtime.

As this process uses the precompiled objects of gestures definitions, it saves the

compilation of gesture definitions during application initialization and improves the

application loading time.

4.2.3 Gesture Validation Process

Figure 17 shows a high level workflow of the gesture recognition process. When touch

data is received from the hardware layer, the toolkit evaluates the primitive conditions

defined in validate blocks of the registered gestures. The framework internally handles

the multi-user scenarios during result storage and evaluation of primitive conditions in

each block. This is because gestures may appear in parallel when multiple users interact

simultaneously. Once a gesture is recognized, the gesture processor calculates the

requested return values and notifies the application through the event controller.

43

43

Figure 17: The workflow of gesture recognition

A validate block consists of one or more primitive conditions connected to each other like

a chain. The validation process follows the lazy evaluation approach where it starts from

the first primitive condition in the chain and it only passes the valid data set (or multiple

possible sets) to the next condition in the chain. This allows the system to improve

performance by realigning the elements of the virtual chain without breaking the logic.

Figure 18: The execution process of primitive types

Figure 18 shows the execution process of primitive conditions in each validate block

where the process starts from the first primitive condition which receives the raw touch

44

44

data from provided by the framework. The primitive condition then processes the data

and passes only the valid set or sets of touch points to the next primitive condition. In the

above figure, the touch limit primitive condition receives the three active touch points.

Since its internal rule defines that the particular gesture requires two touch points, it

creates new datasets from the raw touch data which is three sets (touch point b & c, a & c

and a & b) and passed to the next primitive condition. In the same way, the on same

object primitive condition found that only two of the three sets of data is valid according

to its rule. So, it passes only those two sets of touch points to the next one. Finally, the

last primitive condition will pass the final dataset to a gesture validator which will then

send the data for calculating return types.

When multiple validate blocks are defined, the compiler considers each block as a step in

a multi-step gesture and performs the validation in the order it is defined.

4.2.4 Integrated Development Environment (IDE)

The exploratory study and preliminary evolution shows that application developers

expected deep IDE integration for the gesture definition language including integrated

compilation, syntax highlighting and on-the-fly error tracking. To address these issues,

we developed extensions for Visual Studio 2010 to support integrated compilation and

syntax highlighting. We selected Visual Studio as it is the most popular IDE to

application developers for any .NET based development.

45

45

Figure 19: Syntax highlighting and integrated compilation support for GDL in

Visual Studio

While writing new gesture definitions is one of the most frequent tasks related to multi-

touch application development, there are times when the current set of primitive

conditions and return types available in the framework is not sufficient to define the

gesture that is most meaningful to the application context. In such case, developers may

have to create additional primitive conditions and return types. Having this in mind, the

Visual Studio Extension for GestureToolkit provides the necessary infrastructure to add

additional primitive conditions & return types from the same Visual Studio project.

46

46

Figure 20: Extending GDL from Visual Studio

The Visual Studio Extension for GestureToolkit also provides project and item templates

to simplify the process even further. At present, templates are available for defining

gestures, primitive conditions, return types, automated tests. In addition to individual

item templates, the extension also includes project templates for Windows 7, Microsoft

Surface, SMART Tabletop, Silverlight and TUIO based applications.

While the extension in Visual Studio currently don‟t support on-the-fly error tracking

(e.g. red squiggly lines), the same functionality is available when the IntelliPad [60] is

used.

IntelliPad is a free IDE from Microsoft and it supports syntax highlighting and on-the-fly

error tracking when MGrammar is used to parse the language. Figure 21 shows an

example of syntax error highlighted using red squiggly mark in the IntelliPad IDE.

47

47

Figure 21: On-the-fly error detection in IntelliPad IDE

4.3 Summary

This chapter describes the design details of the gesture definition language (GDL). It also

explains the process of extending the gesture definition language and the related tools

that can be used to add additional primitive conditions and return types. Then, the internal

process of validating gesture definitions is explained. Finally, The extensions of popular

integrated developer environments (IDEs) that helps develops to write gesture definitions

like Visual Studio and IntelliPad are described with examples.

48

48

Chapter Five: GestureToolkit

In the exploratory study, four major challenges were addressed: device independence,

gesture definition support, device simulator and proper test framework. To address these

challenges, GestureToolkit – a multi-touch application framework was developed. In

addition to providing tools to compile and execute the gesture definition language

described in Chapter Four, GestureToolkit also aims to address the following

development and testing challenges:

1) a hardware abstraction layer that separates the application from the device

hardware,

2) tools to compile and execute the gesture definition language,

3) visual feedback framework for touch interactions,

4) device simulator that provides a number of features including a way to debug and

test touch interactions without an actual device, and

5) an automated test framework that allows to write automated regression test scripts

to validate gestures.

Figure 22: Components of GestureToolkit Framework

49

49

The component diagram of the GestureToolkit framework is shown in Figure 22. The six

key components of the toolkit are:

(1) the hardware abstraction layer which exposes a hardware agnostic API for the

application,

(2) the gesture processor that recognizes gestures from the raw touch data,

(3) the core that acts as a bridge among the components,

(4) the touch recorder that stores the raw data from the hardware abstraction layer,

(5) the test framework that executes the automated test scripts, and

(6) the event controller that keeps track of all gesture event requests from

applications.

We describe these key components in the subsequent sections.

5.1 Hardware Abstraction Layer

We followed a similar approach as Echtler [8] to decouple the actual hardware from the

application layer. This allows the gesture definition to be device independent. This

module provides a hardware agnostic interface for capturing multi-touch inputs. This

interface can be implemented for wide range of hardware platforms. GestureToolkit

currently has implementations for Microsoft Surface, SMART Tabletop, Windows 7

(WPF 4.0 and Silverlight 4.0), Anoto Pen and TUIO protocol. The framework also has an

implementation for a virtual device that can be used to simulate multi-touch inputs. The

virtual device can playback the recorded interactions and run automated tests.

Due to the nature of the software development kits (SDK) provided by the hardware

vendors to build multi-touch applications, the developed applications often become

tightly coupled with the SDK. The result is that significant portions of the application

50

50

need to be rewritten, to simply run it on another device with similar features. To

overcome this, the framework is designed to be independent of these SDKs and

applications developed using it, can easily be ported onto different devices without

changing any application source code. Figure 23 shows how we can change a device with

just one line of code. This can also be handled through configuration settings or

automatic hardware detection.

Figure 23: Changing device/input source of the application

The system also allows for the changing of devices while the application is running. This

is useful for scenarios where additional external devices like the AnotoPen can be

connected at run time or to connect virtual devices that can simulate certain activities for

debugging, testing or demonstration.

The hardware abstraction layer receives low level touch data from touch input providers.

A provider is responsible for translating device inputs into a generic data format

supported by the framework. Each supported device has its own implementation of an

input provider which is developed by extending the base input provider class. The base

input provider provides easy access to reusable utility functions and common features

like data caching to simplify the development and maintenance. The additional code in

the device specific provider is mainly responsible for converting device specific data into

a generic data format that rest of the framework can process.

51

51

Depending on the hardware interface and drivers, devices can send touch input data in

various formats. For example, Microsoft Surface SDK provides an event model that

others can subscribe to receive touch inputs in an asynchronous fashion whereas other

devices (e.g. AnotoPen) uses TUIO protocol that sends data over network layer. Device

specific providers are responsible for converting these data into three events:

SingleTouchChange, MultiTouchChange and FrameChange as per the design

requirement of the GestureToolkit framework. Appendix D describes how to develop a

provider with a step by step code example.

5.2 Gesture Processor

The gesture processor has two key responsibilities. First, it is responsible for parsing the

gesture definitions, compile and embed the output files into application assemblies. Then

at runtime, it also processes the raw touch input data received from the core component

and validates the inputs using the logic defined in the compiled gesture definitions. On

successful detection of a gesture, it computes the results as expressed in the return block

of the gesture definition and finally, sends the results to the core component. The core

component is responsible for notifying the applications via the event controller.

As explained in Chapter Four, the rules and syntax of the gesture definition are defined

using the MGrammar [41] language definition tool. The gesture processor uses the parser

provided by the MGrammar to parse the code in a gesture definition file. Once the entire

abstract syntax tree (AST) is generated for the code, the gesture processor uses

MGraphXamlReader library to instantiate objects of respective primitive conditions with

the values defined in the definition. Finally, the entire collection of primitive conditions

are serialized into java script object notation (JSON) format and stored in a text file so

52

52

that at runtime the application can directly get the collection of primitive conditions from

the serialized form.

At runtime, when the application code subscribes for a particular gesture for the first

time, the gesture processor instantiates the set of primitive conditions from the serialized

form. However, if the same gesture is subscribed multiple times, the framework reuses

the same instances. As a result, when input is received, the gesture processor only

evaluates the primitive conditions that are needed for active gestures.

5.3 Core Component

The core component acts as a bridge among the components. It is also responsible for

maintaining history to touch data and execute other general components including visual

effects. The touch history is managed by the Data Queue module and visual effects are

managed by the Visual Feedback module, both part of the core component.

5.3.1 Data Queue

The data queue maintains current state and recent history of raw touch data. It provides

touch-related information to rule validators in various forms, including recent touch

history, touch path, time stamps, and age of a touch. During system initialization, the

gesture processor notifies the data queue about the possible longest history of data that

could be requested by any active gesture. This information may change during runtime as

developers can dynamically add new gestures at any point in the application runtime. If a

new gesture event is registered, a message from the event controller via the gesture

processor will notify the data queue. The data queue deletes all touches from the history

that are outside of the time frame of interest.

53

53

5.3.2 Visual Feedback

Like any communication, feedback is important for multi-touch systems. While a system

can provide feedback to users via audio, visual or tactile medium, the visual feedback is

the most widely used in todays‟ applications. GestureToolkit provides two types of visual

feedback:

1) touch feedback that provides visual feedback for any arbitrary touches,

and

2) gesture feedback which provides a visual feedback when the desired

gesture is detected.

5.3.2.1 Touch Feedback

While the framework provides a default feedback for touch interactions, it also allows the

developer to create their own custom feedback. The framework provides a plug-in

architecture that allows developers to use visual feedback from external sources as well

as share their own custom feedbacks with others.

Figure 24: Example of a Touch Feedback

Figure 24 shows a touch feedback named BubblesPath that comes out of the box with

GestureToolkit. The plug-in architecture simplifies the development of touch feedbacks

54

54

to a great extent. For example, a specific touch feedback plugin only defines a single

instance of a touch point (e.g. one gray bubble in Figure 24) and how it will animate. The

framework internally handles implementation complexities like multiple instances for

long touch path as well as multiple touch points, background threading, frame rates for

performance and so on. Appendix E shows the implementation of BubblesPath touch

feedback.

The framework also simplifies the process of managing touch feedback within the

application by exposing public interfaces. Figure 25 shows a code snippet to add the

bubbles path touch effect.

Figure 25: Code snippet to add touch feedbacks

5.3.2.2 Gesture Feedback

Like touch feedback, application developers can also create their own gesture feedbacks

or use visual effects that come with the toolkit out of the box. While a touch feedback is

visible whenever a touch data is received, the gesture feedback is used to notify the user

when the specified gesture is recognized.

Figure 26: The gesture feedback for the lasso gesture

55

55

Figure 26 shows the HighlightSelectedArea gesture feedback that is used to inform

the user about the area selected the lasso gesture. The source code for this gesture

feedback with step by step explanation can be found in Appendix F.

5.4 Touch Recorder

To record interactions, the Touch Recorder subscribes to lower level input from the

hardware abstraction layer through the core component and saves the data into an online

storage and also caches it locally to improve performance. This allows automatic

synchronization of data between developer machines and actual devices.

During playback this module reconstructs the touch data object from the XML content

and sends the data to the system through a virtual device so that it appears to the rest of

the system as if it is coming from the actual device. This allows the developers to test

applications that require multi-touch interactions on their development machine. Figure

27 shows example of using the recorder module to individually record the lasso and zoom

gesture and later play them in parallel to test multi-user scenarios.

This touch recorder can also be used in applications to implement features like interactive

tutorials, touch data collection and the like. The touch recorder provides following API

methods which application developers can use:

Method Name Description

StartRecording() Starts recording all touch interaction data

StopRecording() Stops recording and returns the recorded data in xml form

StartPlayback(…) Starts playback of the recorded touch interactions. This

method has a number of overload methods including options

56

56

to play single set of data as well as multiple datasets by

merging them into one timeline.

5.4.1 Storage Module

The data is stored in an XML format (Figure 28). The recorder can record and store

interactions from any device that is supported by the hardware abstraction layer,

including basic touch information (i.e., coordinates, touch ID) and any additional device

specific data provided by the hardware.

Figure 27: GestureToolkit: Simulating multi-user touch interactions

57

57

Figure 28: An XML code fragment representing a part of a touch interaction

Figure 28 shows an XML code fragment generated by the touch interaction recorder. The

recorder records both basic touch data that are common to all supported devices and also

the device specific data (e.g. touch size, touch direction) under the Tags node.

5.4.2 Local Cache

GestureToolkit supports both web based applications and regular desktop applications.

For web applications, it uses the Silverlight framework. A difference between the desktop

and the web platform is that web applications do not have access to local file systems

which is needed to maintain the cache data. To overcome this, the framework uses

isolated storage when running on web browsers and the file system for regular desktop

applications. However, this is internally handled by the storage manager and application

developers only need to code against the StorageManager class. Figure 29 shows the

internal structure of the StorageManager class.

58

58

Figure 29: Internal Structure of Storage Manager

5.4.3 Remote Storage

The remote storage uses a relational database at the backend to store the data and exposes

an XML web service which is publicly accessible and authenticated by user credentials.

The web service is developed using ASP.NET and it uses a Microsoft SQL Server

database.

Get request

Save request

XML format

Client Web service end point

(Generate unique ID if necessary)

Relational Database

Figure 30: Internal Design of Remote Storage

Figure 30 describes the internal design of the remote storage system. The web service in

remote server transfers data between the server and the client in text form which contains

XML data. When client requests to save a new touch interaction data, the server ensures

that the key provided by the client is unique. Since there could be multiple clients

Accessed by specific
client storage

Accessed by Storage
Manager

Accessed by the end
user (recorder module)

Storage
Manager

Silverlight
Storage

SL Cache
Remote
Storage

WPF (regular
.net) Storage

Desktop
Cache

Remote
Storage

59

59

communicating with the server at the same time, if a duplicate key is found the server

adds a timestamp at the end of the key to make it unique.

5.5 Automated Test Framework

Automated unit testing is a well-known way to increase the effectiveness, efficiency and

coverage of software testing [40]. It is one of the industry standard methods for

repeatedly verifying and validating individual units of the application in regression

testing. Though there are some simulators available to manually test tabletop

applications, tool support for unit testing multi-touch gestures is limited.

Record and playback can be used for both manual and automated testing. While manual

test may involve gesture detection as well as other UI related functionality testing, the

automated test framework focuses specifically on validating gesture detection code. Most

automated Unit Test systems do not have the option to use an active UI during test.

However, gestures are directly related to the UI and testing them often requires UI

specific functionality. To mimic a realistic application scenario, the test framework

creates an in-memory virtual UI layer and subscribes to gesture events in the same way

that an application would. The test framework can be used to test any type of gestures

that is defined using the gesture definition language, including complex multi-touch

gestures that involve touch interactions with multiple steps.

Figure 31 shows the workflow of an automated test in GestureToolkit. To start, it creates

the virtual application and registers the necessary gesture events during the initialization

process. Then the TouchRecorder loads the data from storage and starts the simulation

process. If a test involves simulating multi-user scenarios using multiple touch

interactions then the system merges frames from individual recorded data into one time

60

60

line. The virtual device continues to send simulated device messages to the framework.

As soon as the desired gesture is detected, it invokes the user defined validation code.

Depending on the type of gesture, the user defined code can be invoked multiple times.

Regardless of the status of gesture detection, the framework also invokes the “Playback

Completed” test code defined by the user at the end.

Figure 31: Workflow of Automated Test Framework

5.5.1 Asynchronous Test Environment

Traditional unit tests execute sequentially, however, multi-touch gesture based user

interactions require asynchronous processing. For example, a “Flick” gesture requires a

certain period of time to complete, so a test to validate the recognition of that gestures

must wait until the gesture is completed. Such tests require asynchronous execution

which is supported by the GestureToolkit test framework API.

61

61

Multi-touch gesture interactions can trigger continuous events. For an example, a photo

viewer application needs to keep responding to the “Zoom” gesture in “real-time” as long

as the zoom interaction continues. So, a test for this scenario needs to validate the zoom

interaction continuously instead of just once it is completed. The GestureToolkit test

framework allows a developer to write unit test cases for such continuous touch-

interactions.

To support asynchronous and continuous interaction testing, our test framework is event

driven. The core of the API is the Validate method which takes the following

parameters:

 expectedGestureName: The name of the gesture to detect (e.g., Zoom).

 savedInteraction: The identifier or the recorded interaction that should produce

the expected touch interactions.

 gestureDetectedCallback: The method to call when the gesture is detected.

Developers can write custom validation code inside this method.

62

62

Figure 32: Example unit test code using Touch Toolkit

Figure 32 shows a code fragment that is used to test if the “Zoom” gesture is detected as a

result of playing the saved interaction named “TouchInteraction02”. In line 5 and 23 of

the code, we use an existing class named AutoResetEvent from the System.Threading

class library in the Microsoft .NET framework to implement the asynchronous unit test

execution. AutoResetEvent allows threads to communicate with each other by sending

signals. The Validate API as discussed above is used in line 7. In addition to just the

detection of the “Zoom” gesture a developer can provide additional validation code

around line 15.

63

63

Figure 33: User defined gesture validation code

Figure 33 shows how to write unit test for continuous interactions such as “Zoom”. Here

the purpose of the validation is to see if the distance between subsequent touch points

during a “Zoom” gesture is increasing. Using this same approach GestureToolkit allows

developers to write unit test code for validating multi-touch interactions.

5.6 Event Manager

The framework provides an interface to subscribe to events for specific gestures in a

method similar to how applications receive messages for mouse or keyboard events.

shows the code snippet to subscribe a gesture named “zoom”. It also allows defining the

scope of the gesture which is the image object “image1” in this case.

Figure 34: The code snippet to subscribe "Zoom" gesture

The framework passes the source of the gesture and return types specified in the gesture

definition through the arguments of the callback method.

64

64

Figure 35 shows the internal architecture of the framework that runs the gesture

recognition engine. The gesture definitions and primitive conditions live outside the core

framework and are loaded on demand. Therefore, the framework only loads the gesture

definitions that are registered by the application at run time.

Figure 35: The simplified architecture of gesture processor

The gesture processor is responsible for efficiently evaluating the primitive conditions.

For example, if a primitive condition is used in multiple gestures and needs to be

evaluated under the same context then the gesture processor will take necessary steps to

perform the validation once and reuse the output later.

5.7 Summary

This chapter focuses on describing the implementation details of GestureToolkit. It also

explains how the touch interaction recorder can be used to simulate multi-user scenarios

and write automated test scripts. The technical challenges that were faced during the

development of GestureToolkit are discussed in the next chapter.

65

65

Chapter Six: Technical Challenges

From planning to designing and throughout the implementation stage, we faced different

types of technical challenges including choosing the right platform, future maintenance,

usability of the toolkit and many more. We describe these challenges in the following

sections.

6.1 Designing the Language

While choosing the platform for the language, we found several possible approaches:

first, use an existing general purpose programming language (i.e. C++, C#, Java) to

define gestures; second, use functional programming languages (i.e. Scala, F#) to define

gestures; third, create a new domain-specific language from scratch. All of these

approaches have trade-offs in terms of ease of use, runtime performance, expressiveness,

flexibility and ease of implementation.

The key advantage of using an existing general purpose programming language is that it

has very limited or almost no learning curve. An existing language also reduces the

implementation complexity, considering that the language grammar, compilers, and

developer tools are already available. The main reason behind not choosing this approach

is the inability to add new primitives to the language to ensure simplicity and readability.

For example, the zoom gesture definition may use keywords like “increasing” to define

touch patterns and reader friendly names for return types. It would not be possible to

provide such custom syntax support with C++ or any other general purpose language.

The features of new functional programming languages like Scala [23] or F# are

impressive. The syntax of F# carries less noise (i.e. no curly brackets, simpler parameter

passing) compared to C++ or similar languages. It also provides unique features, like

66

66

method chaining, that are important to GDL. Finally, under the hood it‟s just another

language in the .NET family and it compiles into a regular common language runtime

class, which makes the integration with existing UI frameworks quite straightforward.

Although the features of F# look appealing, it suffers from limitations similar to general

purpose languages including the inability to add new coding styles, keywords, and the

like.

Considering the alternatives and requirements of the language, we chose to design a new

language from scratch. Mernik [27] provides some good explanations on when and how

to develop a new DSL along with common challenges. There are a few tools available to

design DSLs, including ANTLR [25] and MGrammar from Microsoft DSL tools

(codenamed “Oslo”) [26]. We decided to use MGrammar for a number of reasons; it

provides built-in support for IntelliPad, a free IDE for language design, and it supports

on-the-fly error checking and syntax highlighting for DSLs without much additional

effort.

We developed the language parser and framework using Microsoft .NET. It can be used

in both web applications via Silverlight and desktop applications like Windows Forms or

Windows Presentation Foundation. Silverlight provides comprehensive support for user

interface design and native multi-touch, and runs on both Mac and Windows operating

systems. So, we believe it can reach a greater range of users and developers compared to

other platforms.

6.2 Hardware independence with device specific support

Windows 7 is the first operating system from Microsoft that has native support for touch

devices. So as long as a multi-touch device is supported by the Windows 7, the

67

67

application developers can rely on touch messages from the operating system and build

device independent applications. However, the reality is that a number of popular multi-

touch devices including the Microsoft Surface do not have the necessary driver support

for the Windows 7 operating system. As developing applications using the vendor

provided SDK (e.g. Microsoft Surface SDK, SMART SDK) would make the application

bind with that particular device, creating a device independent multi-touch application

framework was a challenge.

To build a framework that would work with different multi-touch devices, the design of

the communication modules that passes the touch related messages into the framework

needs to be decoupled and extensible. So that the rest of framework and applications

developed using the framework can work without any change in code. To achieve this,

we followed the provider model design pattern. In GestureToolkit, the modules that

responsible for translating device specific data into a generic format are called input

providers. Each provider is extended from a base provider and the framework uses one of

these providers depending on the device the application is running on.

6.3 Extensibility

During the development and evaluation process we observed that the gesture definition

language needs an easy-to-implement extensibility framework that would allow a

knowledgeable application developer to create or share new primitive conditions and

return types. We found two key challenges to provide this functionality. First, the

language parser needs to be updated whenever a primitive condition or return type is

added. Second, the framework should be able to get the related class files from the

68

68

application assembly so that they don‟t have to add the classes in framework assemblies

which would require recompilation of the framework.

To address the first challenge, the parser is designed in a way that application developers

can only provide the parsing logic for the new language components inside the

application assembly and at runtime the parser will update the parser definition,

recompile and build the parser module and then start parsing the gesture definitions. The

details are explained in section 4.1.3.

To address the second challenge, the framework uses reflection
1
 to find out and

dynamically load the dependent classes related to primitive conditions and return types

that are used in the gesture definition. This process allows the external developers to

independently implement new recognition algorithms and contribute to GestureToolkit

framework. These language components follow a plug-in approach which allows

application developers to freely share them across projects.

6.4 Developer Expectations

From the exploratory study, developer feedback in preliminary evaluation and based on

our own experience, we found that developers have a wide range of expectations from a

toolkit. These expectations can be grouped into two categories: Productivity Tools and

Implementation Details.

6.4.1 Productivity Tools

A common developer expectation is good IDE support including warning message,

templates, syntax highlighting, auto-complete and integrated build. To address these

1
 A technique by which a program can observe and modify its own structure and behavior at runtime.

69

69

issues, GestureToolkit provides these features except auto-complete for Visual Studio

2010 – the most widely used IDE in .NET developer community. The features related to

integrated developer environment are described in Section 4.2.4.

6.4.2 Implementation details

We observed that experienced developers are often interested in low level

implementation details, performance issues and access to the framework via an

application programming interface (API). To address this, we ensured that all public

methods in the framework have comments about its functionality. They were written by

the same developer who developed it. The framework also provides a rich set of low-

level APIs that allows knowledgeable developers to directly use internal framework

features. For example, the same recorder module that is used by the automated test

framework to store application specific touch interactions can be used to build interactive

tutorials for custom applications.

70

70

Chapter Seven: Evaluation

After completing the implementation of all major features, a preliminary evaluation was

conducted with the same participants of the initial exploratory study to assess the

usability and appropriateness of the toolkit.

We performed the preliminary evaluation with a focus on getting early feedback from

experienced multi-touch application developers about the usability and appropriateness of

the toolkit. All of the studies were done individually. We used an audio recorder to record

the conversations and a screen capturing tool to record a user's activities on the screen

during the coding tasks. The evaluation was done three months after the initial

exploratory study using the same participants.

7.1 Data Collection

Each session lasted 50 minutes and consisted of three sections as follows:

First, we showed the participant a seven minute introductory video describing the main

features of our framework and spent 1-2 minutes on follow up discussion. Then, we

asked the participant to perform the following three tasks to a partial implementation of a

tabletop photo viewer application:

 Add a photo resize features using the predefined zoom and pinch gestures.

 Record the resize interaction for later be use in automated testing of the

application.

 Write a UnitTest to automatically test the zoom gesture in an existing visual

studio test project.

 Define a new gesture using GDL

71

71

Finally, we conducted a semi-structured interview to collect feedback on the toolkit and

to better understand each participant's experiences using the toolkit.

7.2 Findings

At a high level, our preliminary evaluation has suggested that the GestureToolkit test

framework:

 can be used to write unit tests for touch interactions, and

 the record/replay feature can be used to overcome some of the testing and

debugging challenges.

 GDL helps to simplify the gesture definition process to a great extent. However,

better IDE support can improve developer efficiency.

These findings are discussed in some more detail in the remainder of this section.

7.2.1 Findings from Task 1: Adding Resize Functionality

Participants were asked to add resize functionality for the image objects. The required

gestures (zoom and pinch) were available in GestureToolkit's predefined list of gestures.

The purpose of this task was to evaluate the usability of the gesture event subscription

API.

Participants P2 and P3 were able to complete the task. However, P1 partially completed

the task but faced difficulty on using the right data type from the library. We found that

she was expecting that the IDE's auto-complete feature would help her to determine

which types to use, however this feature was not supported in this case.

In summary, the participants were able to understand how to use the toolkit to implement

an application feature. We also found that participants were expecting comprehensive

IDE support not yet available in our prototypical implementation.

72

72

7.2.2 Findings from Task 2: Record the Resize Touch Interaction

This task requires one to do the following:

 Write the appropriate code to show the recording panel in the debugger.

 Use the recorder panel to record the touch interactions.

These steps were demonstrated in the introductory video. All of the participants

successfully completed this task. This feedback indicates that our participants could

quickly learn how to record an interaction using the tool.

7.2.3 Findings from Task 3: Writing Unit Test

Participants were asked to write a unit test to validate the “zoom” gesture. To ease the

process of writing unit tests, GestureToolkit provides IDE templates of test code.

However, a developer needs to write the actual test code depending on the specific

interaction under test.

The purpose of this task was to see how easily a developer can understand the test API

and the appropriate structure for writing unit tests for gestures. The “zoom” gesture was

chosen for three reasons. First, it is a common and comparatively simple gesture and the

associated test plan is straightforward. Second, this is a scenario that requires developers

to write asynchronous test code and developing the test logic. Finally, “zoom” is a

continuous gesture that requires the test code to react in a continuous fashion. This test

scenario gave our participants an opportunity to use all of the main testing features

provided by our framework.

All the participants completed the task. While participant P1 was not familiar with the

concept of inline functions which simplifis the asynchronous code execution to a great

extent, she was able to complete the task as the IDE template already placed the basic

73

73

code structure. This indicated that the participants, after implementing and recording an

interaction using GestureToolkit, could write an automated test for the interaction. We

also found that templates can help reduce the learning curve for new developers.

7.2.4 Findings from Task 4: Define a New Gesture using GDL

The participants were given a printed copy of the list of available primitive conditions

and return types and asked to define a five-finger-selection gesture. The participants were

given with examples of the gesture but specific rules to recognize the gesture was left out

for participants to decide. The definitions written by each participant were different from

the logical perspective. However, they were able to use the language to define the gesture

according to their own logical concepts. This shows that developers can use the language

to define custom gestures.

7.3 Summary of Preliminary Evaluation

This study has provided preliminary evidence that our test framework provides effective

support for many of the challenges that our participants faced in their debugging and

testing of tabletop applications. For example, Participant P3 appreciated that the

GestureToolkit allowed him to test and debug without moving between the tabletop

device and his workstation, which he believes will help him to be more efficient in his

development:

“For sure it will save a lot of development time as you don't have to move between the

device and development machine back and forth just to test a feature.”

He also felt it was valuable that “you can also interact when playback is going on” as it

makes many debugging scenarios easier. Participant P2 felt that the main benefit of the

framework for him would be the ability to develop automated tests and use those as part

74

74

of continuous integration suite. Finally, participant P1 felt that the support for device

independent record and replay in the GestureToolkit to be the most useful for her

development work.

7.4 Community Response

In addition to formal evaluation we also received community initiated responses. The

GestureToolkit project is an open-source project published under the GNU Library

General Public License (LGPL) and hosted at CodePlex. The entire source code,

documentation, issue tracker and discussion on future plans are available at

http://gesturetoolkit.codeplex.com. Since the first release, we have received encouraging

feedback from both the academic research community and industry including team

members from the tabletop team at SMART Technologies and the Microsoft Surface

team at Microsoft. The project has also been highlighted on a number of popular websites

including www.infoQ.com. Figure 36 shows the project website activity from April 2010

to October 2010.

Figure 36: The GestureToolkit Project website activity till October 2010

75

75

Chapter Eight: Conclusion

This thesis presents an approach to improve the tool support of multi-touch application

development and testing. First, an overview of the challenges involved in developing

multi-touch applications was presented to provide the background necessary to

understand the challenges in this field. Next, a discussion of previous attempts in

different areas of multi-touch application development process was presented, and the

strengths and weaknesses of these approaches were discussed. A domain-specific

language to define gestures and a framework, GestureToolkit, were developed to reduce

the development complexities and provide support for testing multi-touch interactions in

both manual and automated approach. The structure of GestureToolkit and its

implementation details were discussed. Preliminary evaluations were then conducted to

validate the research goals described in Section 1.2 and to give insight into the strengths

and weaknesses of GestureToolkit.

8.1 Thesis Contributions

The first contribution of this thesis is the exploratory study covering the challenges that

the developers are facing today to build multi-touch applications. First, it compares the

results of existing research on useful gestures for multi-touch surfaces with the gesture

support available in existing tools and frameworks. Then, it presents an investigative

report on three touch based applications to understand the touch related requirements of

different applications. Finally, a semi-structured interview with experienced developers

reviled the challenges a developer face during building multi-touch applications. The

result of this exploratory study should make it easier to focus on framework and tool

76

76

development in the future as it can help to determine the difficulties of the development

process of multi-touch applications.

The second contribution of this thesis is the gesture definition language (GDL). GDL

presents a new concept for defining gestures and an approach to integrate it with existing

application frameworks. The language supports multi-user, multi-touch and multi-step

gestures; and also provides an extensible architecture that allows adding new primitives

into the language. Preliminary evaluation shows that developers like the concept of a

domain-specific language to define gestures.

The third contribution of this thesis is GestureToolkit – a software development kit for

multi-touch applications. GestureToolkit fulfills the research goals described in Section

1.2. Not only GestureToolkit is the only tool currently supports a domain-specific

language to define custom gestures but it is also the only tool that provides an automated

test framework for gesture validation. GestureToolkit also provides a visual feedback

framework that allows the developer to build applications with consistent visual feedback

for touch and gestures across different devices. The device virtualization technique of

GestureToolkit enables development and testing of multi-touch applications from non-

touch enabled computers (e.g. regular desktop PC). Most important, however, is that

GestureToolkit is a device independent framework and applications developed using it

can run on any of the supported devices without any change in the application code.

8.2 Limitation

While GestureToolkit helps to simplify the multi-touch application development in many

ways, it also has a few limitations. The language and related frameworks are developed

using Microsoft .NET and well integrated with Visual Studio IDE. This makes it easy to

77

77

use for any application that runs on the same platform. It does not, however, support

application development with non-Microsoft languages.

GDL is intended to be used for multi-user, multi-touch based applications. While the

language supports multi-step gestures, it is currently limited to gestures with sequential

steps. The language can also be extended to support wider range of logical conditions

(e.g. NOT, XOR).

The purpose of the preliminary user study was to generally evaluate the approach taken in

GestureToolkit. We had three experienced tabletop application developers as our

participants. We recognize that a comprehensive user study involving more participants

can provide more generalizable insights about the approach and our tool.

8.3 Future Work

The ongoing research focuses on generating gesture definitions from sample datasets of

touch interactions and a visual representation of the gesture definition. This will allow

users to define a gesture from sample touch data and the visual DSL will allow non-

experts to fine tune the logical conditions. However, the research is still at the early state

and we would like to provide these features in GestureToolkit in the future.

We would also like to provide additional logical operators in the gesture definition

language. In addition to the record/replay based testing, a programmable user interface

automation testing for multi-touch applications could also be an interesting approach that

we would like to investigate in the future.

78

78

References

[1] Selim, E. and Maurer, F. eGrid: Supporting the Control Room Operation of a Utility

Company With Multi-Touch Tables. The ACM International Conference on

Interactive Tabletops and Surfaces, November 7-10, 2010, Saarbrucken, Germany.

[2] Wang, X., Ghanam, Y., Park, S. and Maurer, F. Using Digital Tabletops to Support

Distributed Agile Planning Meetings, In Proc. of 10th International Conference on

Agile Processes and eXtreme Programming (XP 2009), Demo Abstract, Pula, Italy,

2009

[3] Zabir, O., Khandkar, S. Hossain, M., and Raihan, A. 2005. SmartUML.

http://smartuml.sourceforge.net

[4] Multi-Touch Vista, http://multitouchvista.codeplex.com/. 2010

[5] N. Villar et al., “Mouse 2.0: multi-touch meets the mouse,” in Proc. UIST, vol. 9,

pp. 33–42.

[6] U.S. Pawar, J. Pal, and K. Toyama, “Multiple mice for computers in education in

developing countries,” International Conference on Information Technologies and

Development, 2006.

[7] J.C. Lee, “Hacking the nintendo wii remote,” IEEE Pervasive Computing, 2008, pp.

39–45.

[8] Florian Echtler and Gudrun Klinker, “A Multitouch Software Architecture,”

NordiCHI 2008: Using Bridges, 18-22 October, Lund, Sweden.

[9] Touchlib: A multi-touch Development Kit, http://nuigroup.com/touchlib/, 2010.

79

79

[10] E. T. Hansen, J. P. Hourcade, M. Virbel, S. Patali, T. Serra. “PyMT: A Post-WIMP

Multi-Touch User Interface Toolkit”. International Conference on Interactive

Tabletops and Surfaces, 2009.

[11] Bastéa-Forte M., Yeh, RB and Klemmer, S.R. Pointer: Multiple Collocated Display

Inputs Suggests New Models for Program Design and Debugging. In Extended

Abstracts of UIST (Posters), 2007.

[12] J. O Wobbrock, A. D Wilson, and Y. Li, “Gestures without libraries, toolkits or

training: a $1 recognizer for user interface prototypes,” in Proceedings of the 20th

annual ACM symposium on User interface software and technology, 2007, 168.

[13] S. Kratz and M. Rohs, “A $3 gesture recognizer: simple gesture recognition for

devices equipped with 3D acceleration sensors,” Proceeding of the 14th

international conference on Intelligent user interfaces, 2010, pp. 341–344.

[14] Sezgin, T.M. and Davis, R. (2005) HMM-based efficient sketch recognition. Proc.

IUI '05. New York: ACM Press, 281-283.

[15] Cao, X. and Balakrishnan, R. (2005) Evaluation of an on-line adaptive gesture

interface with command prediction. Proc. Graphics Interface '05. Waterloo, Ontario:

CHCCS, 187-194.

[16] Anderson, D., Bailey, C. and Skubic, M. (2004) Hidden Markov Model symbol

recognition for sketch-based interfaces. AAAI Fall Symposium. Menlo Park, CA:

AAAI Press, 15-21.

[17] Pittman, J.A. (1991) Recognizing handwritten text. Proc. CHI '91. New York: ACM

Press, 271-275.

80

80

[18] Cho, M.G. (2006) A new gesture recognition algorithm and segmentation method of

Korean scripts for gesture-allowed ink editor. Information Sciences 176 (9), 1290-

1303.

[19] Dietz, P. and Leigh, D. DiamondTouch: A Multi-User Touch Technology. UIST

2001, 219-226

[20] D. Schmidt, H. Gellersen, “Show Your Hands: A Vision-Based Approach to User

Identification for Interactive Surfaces”, International Conference on Interactive

Tabletops and Surfaces, 2009

[21] I. Rosenberg, K. Perlin, C. Hendee, A. Grau, and N. Awad, “The UnMousePad: the

future of touch sensing,” SIGGRAPH'09: Posters, 2009, p. 23.

[22] C. North, T. Dwyer, B. Lee, D. Fisher, P. Isenberg, G. Robertson, K. Inkpen, and

K.I. Quinn, “Understanding Multi-touch Manipulation for Surface Computing,”

Interact 2009

[23] The Scala Programming Language. http://www. scala-lang.org/, 2010

[24] F# at Microsoft Research. http://research. microsoft.com/en-

us/um/cambridge/projects/fsharp/, 2010

[25] ANTLR: A Tool to Build Domain Specific Languages, http://www.antlr.org/, 2010

[26] Microsoft DSL tools, http://msdn.microsoft.com /en-us/data/default.aspx, 2010.

[27] M. MERNIK, J. HEERING, and A.M. SLOANE, “When and How to Develop

Domain-Specific Languages,” ACM Computing Surveys (CSUR) Volume 37, 316 -

344, Issue 4, 2005, 2004, p. 694.

[28] J. Elias, W. Westerman, and M. Haggerty. Multi-touch gesture dictionary. United

States Patent 20070177803, 2007

81

81

[29] J.O. Wobbrock, M.R. Morris, and A.D. Wilson, “User-defined gestures for surface

computing,” Proceedings of the 27th international conference on Human factors in

computing systems, 2009, pp. 1083–1092.

[30] S. Gilbert et. al. SprashUI toolkit. http://code. google.com/p/sparsh-ui/

[31] Fails, J. and Olsen, D. A design tool for camera-based interaction. In Proc. CHI,

2003.

[32] Ilya Rosenberg and Ken Perlin, “The UnMousePad - An Interpolating Multi-Touch

Force-Sensing Input Pad” ACM Transactions on Graphics 28, no. 3 (7, 2009): 1.

[33] Lee, SK., Buxton, W., and Smith K.C. 1985. A Multi-Touch Three Dimensional

Touch-Sensitive Table. In Proceedings of the SIGCHI conference on Human factors

in computing systems. CHI ‟85. ACM, San Francisco, California.

[34] MGraphXamlReader, http://code.msdn.microsoft .com/SQLModCTPMGXaml,

2010

[35] Strauss, A. L. and Corbin, J. Basics of Qualitative Research: Techniques and

Procedures for developing Grounded Theory. Sage Publications, 1998.

[36] Dan Saffer: Designing Gestural Interfaces, 2008.

[37] PLATO (Programmed Logic for Automated Teaching Operations) was the first (ca.

1960, on ILLIAC I) generalized computer assisted instruction system.

http://en.wikipedia.org/wiki/Plato_computer, 2010.

[38] Multi-Touch Systems that I Have Known and Loved, Bill Buxton,

http://www.billbuxton.com/multitouchOverview.html, 2010

[39] Microsoft Surface, http://www.microsoft.com/surface/en/us/default.aspx, 2010.

http://en.wikipedia.org/wiki/Plato_computer
http://www.billbuxton.com/multitouchOverview.html
http://www.microsoft.com/surface/en/us/default.aspx

82

82

[40] Beck, K. and Andres, C. 2004 Extreme Programming Explained: Embrace Change

(2nd Edition). Addison-Wesley Professional.

[41] David Langworthy; Brad Lovering; Don Box. The “Oslo” Modeling Language:

Draft Specification - October 2008

[42] Fails, J. and Olsen, D. A design tool for camera-based interaction. In Proc. CHI,

2003.

[43] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

[44] Westeyn, T., Brashear, H., Atrash, A. and Starner, T. Georgia tech gesture toolkit:

supporting experiments in gesture recognition. In proc. ICMI, 2003.

[45] Ashbrook , D. and Starner,T. “MAGIC: a motion gesture design tool,” in

Proceedings of the 28th international conference on Human factors in computing

systems, pp. 2159-2168, 2010.

[46] Long, A. C., Landay, J. A. and Rowe, L. A. “Quill: a gesture design tool for pen-

based user interfaces,” Eecs department, computer science division, UC Berkeley,

Berkeley, CA, 2001.

[47] Kara, L. B. and Stahovich, T. F. An image-based, trainable symbol recognizer for

hand-drawn sketches, Computers & Graphics, vol. 29, no. 4, pp. 501-517, 2005.

[48] Cardenas, T., Bastea-Forte, M., Ricciardi, A., Hartmann, B. and Klemmer, S. R.

Testing Physical Computing Prototypes Through Time-Shifted \& Simulated Input

Traces. In extended abstracts of UIST 2008.

[49] Testing the User Interface with Automated UI Tests, Microsoft Developer Network,

2010. http://msdn.microsoft.com/en-us/library/dd286726.aspx

83

83

[50] Project White, http://white.codeplex.com/white, 2010.

[51] Selenium, http://seleniumhq.org/, 2010.

[52] QF Test, http://www.qfs.de, 2010.

[53] Frog Logic, http://www.froglogic.com/, 2010

[54] Cocoa Touch Apps, http://cocoatouchapps.com, 2010.

[55] Vimov, http://www.vimov.com/, 2010.

[56] Gray, P., Ramsay, A. and Serrano, M. “A demonstration of the OpenInterface

Interaction Development Environment,” UIST'07 Adj. Proc.

[57] SMART Tabletop, http://smarttech.com, 2010.

[58] Windows 7 Touch, http://windows.microsoft.com/en-CA/windows7/products/

features/touch, 2010.

[59] TUIO, http://tuio.org, 2010.

[60] IntelliPad, http://blogs.msdn.com/b/intellipad/, 2010.

http://white.codeplex.com/white
http://seleniumhq.org/
http://www.qfs.de/
http://www.froglogic.com/
http://cocoatouchapps.com/
http://www.vimov.com/
http://smarttech.com/
http://windows.microsoft.com/en-CA/windows7/products/%20features/touch
http://windows.microsoft.com/en-CA/windows7/products/%20features/touch
http://tuio.org/
http://blogs.msdn.com/b/intellipad/

84

84

Appendix A: List of Predefined Gestures

1. Tap

2. Drag

3. DoubleTap

85

85

4. Zoom

5. Pinch

6. Rotate

86

86

7. Lasso

8. 5-finger-selection

87

87

Appendix B: Ethics Approval

A scanned copy of the original ethics approval is provided for the following two user

studies:

 “Testing Multi-user Multi-Touch Tabletop Applications” – File # 6384, and

 “A Gesture Definition Language for Cross-Platform Multi-Touch Applications” –

File # 6400.

88

88

89

89

90

90

91

91

92

92

Appendix C: Co-Author Permission

This section provides the scanned copies of the co-authors written permission to use the

content of the following publications in this thesis and to have this work microfilmed:

 A Domain Specific Language to Define Gestures for Multi-Touch Applications. In

Proceedings of the 10th SPLASH Workshop on Domain-Specific Modeling,

Reno/Tahoe, Nevada, USA, 2010.

o Co-authors: Frank Maurer.

 Tool Support for Testing Complex Multi-Touch Gestures. In Proceedings of the

ACM International Conference on Interactive Tabletops and Surfaces,

Saarbrücken, Germany, 2010.

o Co-authors: SM Sohan, Jonathon Sillito and Frank Maurer.

 A Language to Define Multi-Touch Interactions. In Proceedings of the ACM

International Conference on Interactive Tabletops and Surfaces, Saarbrucken,

Germany, 2010.

o Co-authors: Frank Maurer

 FitClipse: A Tool for Executable Acceptance Test Driven Development. In

Proceedings of 10th International Conference on Agile Processes and eXtreme

Programming (XP 2009), Pula, Italy, 2009.

o Co-authors: Yaser Ghanam, Shelly Park and Frank Maurer.

93

93

94

94

95

95

96

96

97

97

98

98

Appendix D: Adding new hardware/device support

Adding additional providers to the toolkit allows for applications to work on additional

platforms. The source code described here represents the October 2010 CTP release of

the Toolkit. The following steps (generically) outline how to add a provider for numerous

touch-enabled platforms:

Step 1:

In Visual Studio, create a new C# file, preferably close to the device name.

Step 2:

It is important to understand the events that are supplied with the SDK of the platform

you wish to support (and write the provider for). The key events to understand are

typically related to "Touch down", "Touch up" and "Touch move". This example

demonstrates how to write a provider for the Microsoft Surface, which uses the events

"ContactDown", "ContactLeave" and "ContactChanged".

Step 3:

The 1st step in coding your provider is to import all the necessary references, which will

include the following:

99

99

This will allow you to use the necessary components of the linked

GestureToolkit.Framework and GestureToolkit.GestureProcessor.

Step 4:

When Microsoft Surface SDK is used, the touch data can be retrieved from the

SurfaceWindow object. However, different device SDKs may provide this data in

different ways. So we create a private variable to keep the reference of the window object

that we will use later to retrieve touch data.

In your application, this window is usually bound to the GestureFramework with the

provider you create, which will be shown later.

Step 5:

Next, it is important to setup some manner of storing active touch points and touch

information that is required for the Framework to manage multi-touch information.

Typically, the best manner is to use the dictionary implementation as shown below.

Step 6:

The next step, involves the linking of the events in the SDK to methods. These events are

first linked to the private window provider.

100

100

Step 7:

The UpdateActiveTouchPoints method, allows for the continuous stream of touch points

provided by the hardware, to be updated in GestureToolkit.

Lines 107 - 119, illustrate capturing the position of the touch point, and creating a new

touchinfo object containing the action, position and device id of the contact.

101

101

Lines 121 - 133, illustrate the addition or update of touch points. If a down contact is

received, it means that a new touch point needs to be added whereas everything else

(typically move, etc) should be updated.

Lines 136-145, highlight updating the local cache of active touch points and information.

Step 8:

The final and most important step is to handle the framechanged event for the SDK of

your choice. Occasionally, this event may not be offered, in which case, a possible

solution is to set a timer for ~ 30 msecs and capture all touches in that time frame to

determine which event to raise in the SDK.

For this particular Microsoft Surface example, the SDK provides the necessary

information to forgo the timer implementation.

Lines 53-54, turn the cached active touch information and points into a list, which is

necessary to call the SingleTouched, MultiTouched and FrameChanged methods within

GestureToolkit.Framework.

Lines 57 - 76, illustrate how to raise the appropriate events for GestureToolkit.

Lines 79 - 85, update any cached touch information and points and remove any points

that are of type TouchUp, as there is no longer a touch to be associated with the

information and point.

102

102

With these basic steps and Microsoft Surface, groundwork is set to for you to create your

own provider.

103

103

Appendix E: Developing the BubblesPath touch feedback

Any touch feedback in GestureToolkit needs to implement the ITouchFeedback

interface. The source code described here represents the October 2010 CTP release of the

Toolkit. The following steps (generically) outline how to add a touch feedback:

Step 1:

In Visual Studio, create a new C# file and name it as BubblesPath.

Step 2:

Inherit from the ITouchFeedback interface. The interface requires you to implement

two methods: Init and FrameChanged.

The Init method is invoked only once by the framework during initialization. This is

where we should write any initialization code. In this case, we are storing the references

for the UI where the bubbles need to be rendered and the appropriate thread (i.e.

dispatcher) which we should use for UI rendering. Also we are creating a timer object

that we will use later for UI animation.

104

104

Step 3:

Next, we implement the FrameChanged method that is required by the ITouchFeedback

interface. This method is invoked by the framework multiple times per second to update

the UI.

And that‟s all we need to create a new touch feedback. Note that the ProxyObject class

is an UI element extended from the Grid class in WPF. The ProxyObject contains the

implementation for the animated fadeout effect.

105

105

Appendix F: Developing the HighlightSelectedArea gesture feedback

Any gesture feedback in GestureToolkit needs to implement the IGestureFeedback

interface. The source code described here represents the October 2010 CTP release of the

Toolkit. The following steps (generically) outline how to add a gesture feedback:

Step 1:

In Visual Studio, create a new C# file and name it as HighlightSelectedArea.

Step 2:

Inherit from the IGestureFeedback interface. The interface requires you to implement

two methods: Init and FrameChanged.

The Render method is invoked only once by the framework when a gesture is detected.

This is where we should write code to start the UI rendering task. In this case, we check

for valid set of inputs which is a collection of touch points that represents the touch path.

Then we render a polygon on UI and use appropriate timers for the animated fadeout

effect.

106

106

And that‟s all we need to create the gesture feedback that highlights a specified area.

